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ABSTRACT
MATHEMATICAL MODELING OF NEAR COASTAL CIRCULATION
by
JOHM D. WANG
and

JEROME J. CONNOR

Hydrodynamic circulation in coastal waters is formulated in terms
of mathematical models. A systematic discussion of the derivation of a
set of governing equations, expressing conservation of mass and mementum
is presented. A simplification is introduced by integrating all varia-
bles and equations over the total water depth. The derivation of the
vertically integrated formulation for one and two layered situations is
discussed along with the underlying assumptions and closure problems.

The treatment of boundaries and boundary conditions is given particular
attention. By analogy to the mechanics of a particle it is postulated
that the admissible boundary conditions must either be in terms of
forces or discharges.

The solution of the formulated problem is achieved by using numeri-
cal techniques. For the spatial discretization the finite element method
is chosen because of its larger flexibility in grid layout and better
treatment of boundary conditioms. A detailed discussion is given of the
transformation of the original equations to the mathematically better
based weak form on which the finite element method is applied. All steps
of this procedure are systematically motivated and it is therefore readily
extended to other kinds of problems. The weak form is not dependent on
the existence of a variational statement; but it is derived in a manner
somewhat similar to the method of weighted residuals. The transformed
finite element equatlons consist of a system of ordinary non-linear
differential equations in time. The structure of the linear homogeneous
part of these equations is shown to have a very attractive symmetric or
skewsymmetric form independent of element type and grid configuration.

Several different time integration schemes are considered and the
special structure of the finite element equations is used to determine
their stability properties. The split time techrique which uses the
variables, discharges and depths, at alternating time steps is thus
theoretically found unconditionally stable for the pure initial value
problem. In practice, with prescribed boundary conditions and forcing,
the scheme is apparently only conditiconally stable. It is, however,
the more efficient of the differeant methods examined, regquiring least
storage and computational effort. Its accuracy is probably also ade-
quate for most problems. 1In cases where high accuracy is desired the
fourth order Runge-Kutta method is suggested, although this requires
six to eight times as much work as the split time scheme for the same

2



integration interval. There is need for more basic research in this
area of time integrations of finite element equations.

The one layer model is verified against several known analytical
solutions of long wave problems and is subsequently applied to determine
the typical patterns of Massachusetts Bay, Narragansett Bay and the New
Jersey coast. Verification against real field data of currents is very
difficult, primarily because information about the correct boundary
conditions usually does not exist; but also because reliable current
measurements for the coastal environment are extremely difficult to
cbtain.

The two layer model is still in large part a conceptual model, since
many of the processes, such as interfacial shear and mixing, cannot yet
be quantified with any confidence. However, as a first estimate of
current patterns for layered flow the model 1is very useful. The formu-
lation and numerical solution techniques follow closely those already
discussed for the one layer model. Again, comparisons with known analy-
tical solutions are carried out. Verification against a laboratory
experiment and an application to a rectangular approximation of Massa-
chusetts Bay show the importance of being able to use a layered descrip-
tion. The model is very sensitive to the prescribed boundary conditions
which further enhances the need for a field monitoring program coinci-
dent with its application.

The one layer circulation model has successfully been combined with
a compatible dispersion model to describe the spreading of conservative
or nonconservative suspended or dissolved matter.
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=3 =

=43

initial values of q, qV
rate of volume addition in one layer model
time

initial time

ensemble averaged x velocity

vertical average of u

trial function

velocity fluctuation in x-direction
vertical average of u'
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velocity fluctuations i =1, 2
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initial velocity vector

emsemble averaged y velocity
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T, T surface shear stresses

. T internal stresses (deviatoric)

¢ latitude (N)

¢ localized function vector

wearth phase velocity of earth rotation
@y wgs Wp phase velocities

s my X and y components of earth rotation vector
AH test function

Aqx, Aqy test functions

As grid size

At time increment

dtcr Courant - Freidricks - Lewy critical time step
Ap density variation

B interior boundary angle

] interior domain

Q perimeter of Q

{ 1 references

ol norm

| | absolute magnitude

< > expected value

Subscripts:

1 . layer 1

2 layer 2

k layer k

n, n-1, n-1/2,

arli/2, ot time levels
s {comma) partial differentiation with respect to following
variables

x X component or direction

v y component or direction

- matrix quantity

Superscripts:

b bottom
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e, e; element quantity i =1, NMEL

i, i+1 iteration step

s surface

T transpose of matrix

v molecular viscosity term

trial function

(bar) of matrix: complex conjugate
(dot) time derivative

* prescribed variable

a scale
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CHAPTER 1

INTRODUCTION

Construction and operation of facilities interacting with
coastal waters can change the natural physical, chemical, and bioclogical
processes. As a first step towards understanding how and why these
changes occur, methods of analyzing the circulation patterns are needed.
Estimates of how the water mass moves and where dissolved or suspended
matter is transported are basic requirements for answering questions
pertaining to many of those processes. They are essential for managing
this natural resource in a technologically sound manner.

Based on the vertically integrated shallow water flow for—
mulation, a finite element numerical model for the description/predic~
tion of circulation patterns and surface elevation changes 1is developed
in following chapters.

Iwo of the major natural causes of motion are the wind and
the astronomical tides,which are easily observable., Less conspicuous
and more difficult to account for is the forcing mechanism due to den~
sity differences within the medium, Density variations are consequences
of heat exchange processes or dissolution of chemical compounds such as
salt.

The effect of wind is explicitly included in the formulation,
and the tide, which is considered as a long wave, is accounted for by
the prescribed boundary conditions. Lateral density variations are
pogsible, but their distribution must be specified., An explicit deter-
mination would require solving the conservation of energy and salt bal-
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ance equations simultanecusly with the momentum and continuity equa-
tions, which adds another degree of complexity to the problem.

The model lends itself also to studying flow generated by
natural or man made streamflowe and can be used for initial investiga-
tions of far field circulation induced by a once through cooling water
system.

In a recent report [70], an assessment of the state of the
art in estuarine modeling is presented. The vertically averaged equa-
tions presented by Pritchard in {70] are quite similar to the equa-
tions employed here, though the choice of variables is different. Also,
we employ the finite element methed to obtain numerical solutions.

A review of previous mathematical wmodeling efforts is presented in
Chapter 2.

The tractability of phyéical modeling is also discuesed in
[70]. These models are generally expensive, time consuming undertakings.
Frequently, physical dimensions necessitate distortion in the model,
making exact dynamic similitude impossible., Although physical models
are very useful when properly verified, their predictive capabilities
are sometimes questionable, especially when physical changes in geo-
metry occur.

The vertically integrated formulation (shallow water) was
derived around 1960. It is an attempt at simplifying a very complex
problem by eliminating dependence on the vertical coordinate. The
term "shallow water" 1s used to denote a water mass in which there
is little variation of the variables over the depth. Since their

introduction, the equations have been utilized to investigate circula-
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tion problems. However, further simplifications and.approximations are
often introduced, unfortunately sometimes inconsistently., Similarly,
little work has been dome to establish the necessary and sufficient
boundary conditions for a well-posed problem. Since both physical and
numerical models can handle only a bounded domain, the problems must

be formulated as mixed initial-boundary value problems., Just recently
has there been any concern about existence and uniqueness of solutions
to problems thus formulated, and these issues are still unresolved for
shallow water circulation. 1In Chapters 3 and 4, the derivation of the
vertically integrated flow equations is reviewed. The underlying assump-
tions, basis for constitutive equations, and boundary conditions are
discussed in detail.

The numerical models have traditionally employed the finite
difference method to solve the governing differential equations, In
essence, this method satisfies the governing equations by replacing
derivatives by difference approximations. For a problem in two spatial
dimensions this implies a discretization with a constant slze,square
grid mesh. Although grids of other shapes are possible, they are
usually too inefficient to use. In recent years, a more powerful method,
the finite element technique, has emerged. In this method, the func-
tion satisfying the governing equations and boundary conditions is
approximated by piecewise polynomials. Very flexible grid discretiza-
tion is an essential virtue of this method. 1Its other merits and
problems are discussed in Chapters 5 and 6.

Verification of the model is important. It assures that

the formulation is consistent, the solution procedure 18 correct, and
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also that the assumptions made are in fact reasonable. Model results
must be compared with known solutions or actual field data. Verification
against real data is the most difficult task, Synoptic data of sea sur-
face level and especially currents are essential for proper verificationm,
and specification of boundary conditions. Unfortunately, a sound and
reliable current meter has not yet been perfected. The known propeller
or rotor type meters take samples averaged over rather long time inter-
vals f{~5 sec) and are therefore influenced by oscillatory wave cur-
rents [78]. With the development of the more sophisticated electro-
magnetic meters with much faster response time and sturdier comstruction,
these problems will hopefully be overcome soon. Some comparisoms of
actual data from Massachusetts Bay with model results are presented in
Chapter 8.

As mentioned earlier, boundary conditions have been treated
rather superficially with the result that sufficient data in most cases
do not exlst to prescribe these conditions accurately. By dolng sen-
sitivity studies (Chapter 8) we have found that model results are strong-
1y dependent on the specified boundary conditions. There is therefore
a need to establish systematic field monitoring programs providing syn-
optic real time data for coastal waters. The models can be used ad-
vantageously to identify the best places to install gauges and otherwise
support the field programs.

In addition to the natural wind and tidal dominated flow
situations, a growing interest Is directed towards the circulation in-
duced by large industrial or puwer generating facilities. There are

many technical and mathematical problems associated with modeling such
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cases. Questions of whether mass is conserved or how to apply the loads
have received little attention. In Chapter 8, each of the different
loading situations has been considered and sclution strategies are
outlined.

The one layer vertically integrated model 1s not applicable
when the density varies significantly over the depth causing the flow
to be stratified. One cannot neglect the =z dependence and a truly
three-dimensional formulation is required. Buoyancy effects are impor-
tant and a complete solution must, in addition to solving the three-
dimensional equations of motion, carry out an energy and salt balance
to determine the local density. A model of this type 1s still very
much a "dream'. The existing soft-and hardware may be sufficient to
carry out the solution so it is not a computational problem,although
this in itself is formidable. The overwhelming obstacle lies in the
formulation., There is at present no coherent way of handling surface
and internal waves, real time wind and pressure distributions, turbulent
momentum exchange or boundary conditions. With the increased accuracy
that is desired, all these factors must be known better; but they
cannot be quantified accurately yet. Our belief i{s, that a reliable
predictive three-dimensional model is still a long way off in the
future. In fact, there may be more promise in resorting to stochastic
rather than deterministic modeling since both flow field and loadings
display a random character,

A few attempts at creating a framework for three-dimensional
descriptive models have been done as mentioned in Chapter 9. There is
however no discussion of the important factors we noted above, or how
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such models possibly could be calibrated and verified.

When the density structure shows a layering of the water
mass, a compromise between three-dimensional or one-layer vertically
averaged models seems reasonable. Figure 1-1 shows a typical vertical
density profile for Massachusetts Bay in summer time. This special
layered stratification is entirely due to heat exchange processes and
is characteristic for many coastal areas. The warmer lighter surface
layer (epilimmian)is separated from the colder, heavier bottom layer
(hypolimazion) ty a thin transition zone around the thermocline (meta-
limnion). Mixing between epi- and hypolimnion is radically reduced
because of the density differencee and as a first approximation it may
be assumed that top and bottom layers (neglecting the thin metalimnion)
only are coupled through the pressure distribution. In this case, a
two-layered model will reflect the real physical world better than a
simple vertically averaged one layer model and hopefully it will give
as accurate results as a three-dimensional model for much less work.

In Chapter 9, the status in layered models is briefly
reviewed and Chapter 10 describes the development of a two-layered,

vertically averaged, transient, descriptive, mathematical model.
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Figure 1-1. Typical summer temperature profile in
Massachusetts Bay. Density profile has
similar shape, since the salinity structure
is fairly homogeneous.
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CHAPTER 2

REVIEW OF PREVIQUS EFFORTS

The more significant one layer circulation models developed to date
are briefly reviewed. Both their formulation and solution strategy are
subjected to critical analyses. The objective is to demonstrate the
advantages and disadvantages of and to gain some insight into the var-
ious approaches that one may take. In a subsequent chapter a similar
overview of multilayered and three-dimensional medels is presented.

To aid in the following discussion we list here the vertically
averagéd equations from Pritchard [70]:

(2.1) su _ - su _ =-3u s

o e, 13 1 b
3t~ U ax T Yoy ghx * <> - Py 9X v v Hpo(sz " Ty )

(2.,2) 3v , -v _ -3v _ .dn _ _. 1 % - 1 s
Ut Vet _g(---ay + <1>y) - F_gg_ - fu + ('ry - -rxb)

[s)

(2.3) 3n , 3(HW _ A(HV) _ 4
at 3x ay

Figure 3.2 shows the coordinate system; u, v are the vertically aver-
aged velocities, n is the surface elevation, H is total depth, f is the
‘coriolis parameter , p is an average density, ps, > and rb are sur-
face pressure, surface shear and bottom shear; <i>x and <i>y are the
pressure gradients due to variations in the density. The main differ-
ence between this set and the system of equations that we derive in

the next chapter is in the choice of dependent variables. The verti-
cally averaged equations (2.1) to (2.3) are all nonlinear and boundary
conditions must be prescribed on the velocities. In the vertically

integrated formulation that we employ, the conservation of mass equation
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is linear and boundary conditions are specified on the discharges. For
streamflow boundaries the natural condition is to prescribe the dis-
charge and prescribing the velocity can lead to inconsistencies, be-
cause the surface must be left free to move. The bulk of previous work
however, has used the vertically average approach,sc for discussion
purposes equations (2.1) - (2.3) are most suitable, For completeness
it is finally noted that Pritchard chose to leave out the controversial
eddy viscous terms in (2.1) and (2.2}.

Circulation models were initiated in the field of mathematical
weather prediction. Some of the earlier efforts in hydrodymamics
are the works of Hansen [27] and Welander [76].

Although both were looking at shallow water circulation and employ-
ed vertically averaged equations, two widely different approaches have
evolved from their work.

Hansen [77] outlined the vertically averaged formulation almost as
we know it today. In fact recent models exactly copy his work [35].

He did not include variations in surface atmospheric pressure or den-
sity; but did include a horizontal virtual viscosity term with constant
eddy viscosity coefficient in the momentum equations. The velocity
components were assumed of the form

(2.4) u=ufl + um

(2.5) v

v(l + v'")

where u, v are the ensemble averaged velocity components as functions
of (x, v, z, t); u, v are the vertical average values of u, v and uu",
vv'" are the deviations over depth of u, v from u, v. The relation-

ships (2.4) and (2.5) were used to express the contributions from the
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convective accelerations to the virtuval viscosity terms. These equa-
tions have the disadvantage that if u or v is zero the corresponding
vertical deviation must be zero also which is not necessarily true in
nature. Finally the viscosity coefficients due to turbulence and ver-
tical shear were assumed identical which is without physical basis.

The formulated problem was solved by the finite difference method,
FDM, using the variables n, u and v on a staggered grid in space and
time. This particular scheme shown in figure 2-1 with later modifica-
tions has proven itself very successful in solving tidal flow-problems.

In a recent book by Roache [61] an introduction to the FDM is
given for fluid dynamics probiems and the importance of satisfying the
conservation laws in the large is reviewed. The requirements of stabil-
ity and consistency are also discussed. A more rigorous treatment of
these concepts is given in [60].

One advantage of the staggered grid is that it allows the use of
central differences in space and time, which is desirable for accuracy
and numerical stability while keeping the number of variables low and
partly uncoupled. Figure 2-1 shows there are problems with represent-
ing the physical boundaries properly and special treatment is necessary
to avoid errors and instability. This aspect was not discussed in [27]
and has remained a major problem in later modeling efforts. The usual
procedures require assumptions of surface slope or direction of velo-
city in addition to prescribing the surface elevation or the velocity.

In his original report [33] Leendertse using the same equations a§
Hansen but without eddy viscosity terms very briefly discusses the prob-

lems encountered at the boundaries. However he devoted the main part of
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his efforts to the numerical stability and accuracy aspects, showing
the importance of using centered differences. The treatment of the
nonlinear terms as usual causes severe problems. Time centered dif-
ferences cannot be used for the convective terms in the equations of
motion if a tridiagonal coefficient matrix must be preserved. Similar-
ly only the linearized equations are solved along the boundaries be-
cause the use of values extrapolated from the interior as would be
required leads to instabilities. The nonlinear terms in the continuity
equations are handled by an iteration procedure. The grid employed
must basically consist of a lattice of squares with the configuration

shown in figure 2-2,

. - - " » » »
e 1 e | 1 o | o | & |
2 -+ -+ -+ -+ - +- 4+ -4 -4+ -+
e | o | e | * | & | & | e ) o ) o |
® _ - - - - - - - -
# Water level, ocean boundary = u velocity
+ Water level | v velocity
° Depth

Figure 2-2. Space staggered grid employed by Leendertse and
others.

Although computationally very attractive this layout, which also

staggers the velocity components {(compare with figure 2-1) still
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suffers from difficulties with representing an arbitrary boundary pro-
perly. It has been argued that the staggering of variables makes it
harder to comprehend the results, however, the problem can easily be
solved by numerical interpolation, though accuracy of course is un-
changed. Several applications are shown and the FORTRAN program is
listed in the report, Other investigators frequently use this model
or the same scheme; a few examples from the literature are found in
[60, 75].

Heaps [28] looked at wind surges in the North Sea using the lin-
earized and integrated dynamical equations in spherical coordinates.
His numerical scheme uses a third type of staggered grid in space with
velocities at the same points as shown in figure 2-3. Care was taken
to center the differences in space and an explicit time integration
scheme was used., Consistent treatment of boundary conditions require
considering 22 different types of grid-point configurations. Since
the linearized equations are used the "influence" method or simple
superposition principles can be used, It is however, not certain that
non=linear terms can be neglected, especially ignoring second order
effects of the surface elevation change seems too crude for storm surge
predictions, For shallower areas a linear relationship for bottom
friction with constant ccefficient would probably not reflect the
physical reality very well either.

Reid and Bodine [59] also developed a sterm surge model based on
the vertically integrated equations without the convective accelera-
tion terms. The space stagpered grid of Leendertse was used for the

finite difference solution with an explicit time integration method,
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The flooding of flatlands was incorporated and a radiation type open
ocean boundary condition was introduced of the form

(2.6) q, = cn

where 9, is the discharge per unit width normal to the boundary, c is

a coefficient and n is the surface displacement. The objective was to
impose leas restriction on the system and to avoid the reflection
which normally occurs when the flow or surface elevation is fixed. The
condition (2.6) is however equivalent to an elastic spring support for
a golid and is physically unreasonable for a fluid, since q, would have
to change sign with n, whereas a dependence on the gradient of n would
be more realistic, although not correct as coriolis, bottom and surface
stresses also play a role.

Abbott et. al. [ 1] developed their models along the same lines as
Leendertse with the space and time staggered grid. However a special
implicit time integration method 1s used which has better conservation
properties and thus seems to be more stable. A special feature that
allows the model user to change the grid size, but not orientation, has
also been developed, The model package includes graphical display cap-
abilities, but the program listings are not available to the public.

Sobey [66] reports on a comparison study of the performance of
the models discussed in [ t, 25, 18, 59]. To make the investigation
viable the governing equations were linearized and coriolis and friction-
al terms are neglected. Thus the formulation reduce to the simple 1in-
ear long wave equations

(2.7) §%+

= 0

Qo
£13
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(2.8) v an
5 T &y = 0

(2.9) an ou . v,
+ h(ax + By) 0

The existence and treatment of boundary conditions are totally ignored.
Fourier series solutions for both the above set of differential equa-
tions and each of the 4 listed finite difference analogues were found.
The wave frequency and amplitude characteristics were computed using

the concept of the propagation factor [3g8] to describe the ratio of the
numerical and analytical solutions. The results show that the simple
explicit scheme of Reid and Bodine performed best as long as it remained
stable. Their scheme shows less modulation of wave amplitude and phase
than the others, however, 1its application is more restricted by numeri-
cal stability.

However, the performance of the implicit models [1 ] and [38]
was also satisfactory and considering that larger time steps can
be used these models seem more attractive.

For the great lakes Simons [64] implemented a finite difference
model based on the vertically integrated equations with eddy viscosity
using two space and time staggered grids simultaneously to aveid pro-
blems with the convective terms. Several variations on treatment of
bottom friction and convective terms were tried. Since high resolu-
tion is desired and the time integration scheme is explicit consider-
able computation time is necessary.

Dronkers [18 ] reviews the harmonic method for tidal prediction.
This technique relies on time series analysis to derive harmonic func-

tions of known astronomical periods from data. Prediction is only
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possible when the geometry remains the same and only yields the tidal
components. TFor the coasts of the U.S. such predictions are made
available through the tide tables.

An outline of the method of characteristics applied to the one-
dimensional shalloﬁ water equation is given by Liggett and Woolhiser
[43]. The advantage of this approach is that the original system of
partial differential equations can be written as ordinary differential
equations on the characteristics.

However, these are in general curved and time dependent thus
making a solution more difficult to interpret. Although the same

methodology can be extended to two-dimensional flow there seem to be

no incentive for such work as the curvature of the characteristics
makes it a difficult book-keeping and interpolation process to obtain
a useful solution. Compared with well established finite difference
methods, there does not seem to be any advantage in pursuing the method
of cﬁaracteristics for two-dimensional flow.

The approach initiated by Welander [76] based on the earlier work
of Ekman is specifically designed for wind driven currents. The method is
noteworthy because the dependence on the vertical x-coordinate is deter—
mined analytically. Because one of the assumptions is that the surface
is fixed it is often called the '"rigid 1id" method and is primarily
used to predict wind circulation in lakes [24, 41, 42]. The other
main assumptions are that horizontal momentum diffusion, non-linear
terms and density stratification are neglected. The vertical eddy vis-
cosity is constant throughout,and all velocities vanish on the bottom

(no-slip). The solution proceeds by expressing the z dependence as an
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infinite fourier cosine series [41, 76]. Next the vertically integrated
equations are solved by introducing a stream function which identical-
ly satigfies the approximate continuity equation. The pressure is
eliminated from the momentum equations and one partial differential
equation in the stream function results. This equation with the proper
boundary conditions is solved using finite differences and the vertical-
ly averaged quantities can be derived. From these the velocity distri-
bution over depth and vertical velocity can be found. By cross differ-
entiating the momentum equations and adding, it is possible to cbtain

a poisson type equation for the pressure from which the surface dis-
placement is inferred. Aside from the already mentioned assumptions
which are somewhat restrictive there are difficulties in establishing
boundary conditions, especially for the pressure. Also the stream
function solution has to be accurate enough so that the velocities can
be obtained by numerical differentiation. This can be very costly for
larger problems.

Discrete elements

In the last few years, a method with properties of both finite
difference and element techniques has evolved. Instead of starting
with the differential equations for the infinitesimal element all bal-
ances are performed directly on the computational element. Such a
discrete element can have an arbitrary shape. However, prisms with
square, rectangular or triangular cross sections are usually used.

The variation of variables in an element is characterized by discrete
nodal values. These nodes are usually located at the center of element

sides and at the centroid, and only vertical variations are considered
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on an element side. Correctly formulated the conservation principles
are satisfied and in theory an arbitrary grid can be used. In order

to insure convergence the discrete equations must approximate the dif-
ferential equations as the elements are made smaller. To show this

by taking the limit of the discrete equations as the control volume goes
to zero is often difficult for odd shaped elements. Some examples of
applications of this method are found in [19, 63]. One disadvantage

of this method is that a local grid refinement at X0 ¥, basically re-
quire all elements along y = X and x = ¥, o have game Ax and Ay as
sketched on figure 2-4, It is however quite possible that an interpo-
lation technique or trapezoidally shaped elements could be developed to
circumvent this problem. The use of such schemes has so far not been
documented in the literature,

Finally, the history and development of the finite element method,
FEM, is briefly reviewed. As an engineering tool, it is relatively
new and was first used in 1956 to analyse complex aeronautical struc-
tures. Until late 1960ies it was mainly applied to problems in solid
and structural mechanics. Zienkiewicz has collected a number of such
applications along with some more recent fluid flow problems [381].

A survey of the finite element method in continuum mechanics with a
discussion of the Galerkin expression for a Newtonian fluid is given
by Connor [11].

For a long time the success of the FEM relied upon whether a vari-
ational statement of the problem existed. This approach is for example
followed by Chan et al [6 ] to solve some free surface ideal fluid flow
problems. The functional was solved for by using the Galerkin method
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which may be interpreted as a piece-wise Rayleigh-Ritz technique. 1In
the paper by Finlayson and Scriven [20] it was shown how Galerkin's
method could be derived from the method of weighted residuals and thus
the need for a variational principle was circumvented. Their approach
is to define the residuzl as
(2.10) R=14- 1,
for the differential equation
(2.11) Lu = £,
where 1 is a differential operator; u is the exact solution, G is an
approximate solution and f is the data or inhomogeneous term.

Applying a weighting function w to the residual and summing over
the entire domain @ leads to

(2.12) WR = J Rwdy = J (L6 - £)wdw
] L]

Requiring the summed weighted residual, WR, to vanish yields the inte-
gral equation on which a finite element solution is Sased.

Some confusion exists with regard to the terminology of the Galer-
kin statement., Grotkop [ 26 thus interprets it as an orthogonalization
of the residual to the weighting function. The difference in wording
is unimportant and as we show in chapter 4 it is also unnecessary if
a few essentials of functional calculus are introduced. Although
there is general agreement that the weighting and expansion functions
should have the same form (Galerkin principle), obtaining a well-posed
formulation for a problem has been somewhat a matter of "feeling" and
experience of the solver. This obviously deterred many less experienc-
ed people from applying it. However, a straight forward and rigorous

mathematical procedure has been developed which enables one to transfarm
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any problem from its differential form to an integral form (called the
weak form) which is well suited for the FEM. This procedure is explain-
ed and demonstrated in chapter 4.

Shallow water circulation has attracted only a few finite element
modelers. Gallagher et al, [22] analyzed steady wind driven circula-
tion for shallow lakes using the rigid 1lid equations. Full advantage
of the freedom of varying the grid was not taken in the examples given,
however, the possibility of using existing general purpose finite ele-
ment programs was emphasized.

Taylor and Davis [69] solved the vertically averaged equations
for constant density and neglecting eddy viscosity terms. The plane
was discretized with cubic isoparametric elements and for the time
integration, a fourth order predicter-corrector method, the trape-
zoidal rule, and finite elements in time were compared. Grotkop [26]
treated the same problem using the linear finite element in space and
time. This particular scheme is easily shown toc be lesg accurate
than the trapezoidal rule although requiring the same computational
effort. Applying the linear finite element in time to the equations

(2.13) MX = F

o

where the tilde denotes a matrix quantity, leads to the recurrence

relationship [69]:

1 2
(2.14) E.(n+l = {“.‘n + At{s-l?n + 3-}‘“1}

[

whereas the trapezoidal rule is written

}
- -+ — + F
(2.15) §§n+1 g%n ZBt{Fn n+1}

1
The latter is centered arocund time n + E—and is therefore more
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attractive than the skewed form (2.14). 1In [6y] a cubic expansion in
time was also tested, and based on trial runs for a wave propagating in
a channel it was found that the trapezoidal rule is more efficient. Al-
though both the predictor corrector and the cubic finite element give
more accurate results with the same number of computational elements,
the increased amount of work discourages their use for larger problems.
Even the trapezoidal rule is quite cumbersome to use since the result-
ing matrices are unsymmetric.

The most comprehensive report to date on finite element models
for fluid flow is prepared by Norton et al. [49]. Both vertically aver-
aged and two dimensional flow in the vertical plane are considered. The
latter formulation allows for variable width in a creoss section and
corresponds to the laterally integrated equations. Although the trape-
zoidal rule (linear acceleration) is suggested for time integration
all applications are for steady state cases. To handle the nonlinear
terms a Newton-Raphson iteration method is used. Compared to succes-
sive approximation methods this scheme has better convérgence proper-
ties; but each iteration requires a considerable amount of computation
and is therefore less attractive for time varying problems. The
Galerkin principle is employed to transform the problem into a form
suitable for applying the finite element methods. The approximation
of curved land boundaries with triangular elements causes conceptual
difficulties when velocity slip is allowed. At the necessary break
points of the model boundary the free tangential velocity component
gives rise to flow across the adjoining segments.. Thus it is claimed

that mass cannot be conserved unless both velocity components are

40



prescribed zero at such break points of the model land boundary. Nor-
ton et al. hence advocate that as few break points as possible be intro-
duced and that both velocity components must vanish at these points. A
significant decrease in the flexibility of the finite element grid
follows and an obvious consequence of this strategy is that large
gradients will persist in the vicinity of break peints, which makes it
necessary to use a fairly fine grid there. This however easily leads
to highly distorted elements as displayed in the grids shown in [49],
i.e. very long and narrow triangles which are intrinsically less accur-
ate are employed. The apparent conflict reported above is rather in-
geniously resolved by proper definition of a normal directiom at the
break points as we show in chapter 5 thus allowing for a tangential
flow component and eliminating the need to reduce the number of break-
points.

To conclude this overview we suggest that certain objectives can
be identified as necessary for developing a general purpose vertically
integrated circulation model for shallow water. These objectives are
to present the most complete set of governing equations at the present
time, using the more natural vertically integrated {(instead of aver-
aged) quantities as variables and to take a closer lock at the tur-
bulent and dispersive momentum transfers.

The latest developments in numerical approximation techniques
furthermore indicate that the finite element method is the most
sophisticated numerical tool available. The possibility of using ar-
bitrary grid schematizations and the better handling of boundaries

make this technique particularly attractive for our purpose. We
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shall use the finite element method to solve the general problem of
coastal circulation as it will be formulated and also finally discuss

time integration schemes and other problems associated with obtaining

a sclution for a real situation.
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CHAPTER 3

3.1 FORMULATION

Beginning with the basic principles of conservation of mass and of
force equilibrium,(Newton's second law), a formal mathematical model is
developed for transient vertically integrated flow in the plane. The
approach is somewhat similar to the works by Hansen [27], Reid and
Bodine [59], Leendertse [38], Norton et. al. [49] and Pritchard [7n].
We attempt to include all important steps of the development and to
account for assumptions and their basis as much as possible. Where
numerical parameters are needed in the constitutive equations, numbers
or reiationships based on experience are indicated. The model is thus
intended to be truly predictive with the singular reservation that boun-
dary conditions must be prescribed. The necessary boundary conditions

for a well posed problem is also discussed.

3.2 THREE-DIMENSIONAL FLOW.

The mathematical formulation of the conservation of mass and
momentum principles for three-dimensional flow has Previously been derived
in an eulerian framework using a cartesian x-y-z coordinate system, (see
f.ex. [15]). The operation consists of balancing mass fluxes or forces
for a small cube dx-dy-dz, (see Figure 3-1), and then taking the theo-

retical limit as the volume of the cube approaches zero. The result is

(3.2.1) Psy + (""‘)'x + (w).y + (W).z = e
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which states that the local rate of change of mass per volume,added to the
net flux out,is equal to the rate of adding mass per volume, e. If there
are no internal sources (henceforth we shall define a sink as a negative
source and therefore only need to talk about sources), e is zero. p 1is
the density; u,v,w are the velocity components in x,v,z directions and
partial differentiation is written as a subscript comma followed by the
independent variable.Equation (3,2.1) expresses a fundamental principle

for any continuous one phase fluid.

The equilibrium of forces acting on the control volume is

written for the x- and y-directions:

2 - ]
(3.2.2) (pu)’t + (pu )'x + (puv)'y + (ptmr)’z pfv
Pt Tox T Tyx,y Y Tax, 2 Y 0%
2 =
(3.2.3) (ov) o + Cpuv)  + (ov )yt ov) |+ pfu
-P + T + 1 + T + pm

¥ ¥,x Y.y ZYy,2z ¥y

A rotating right handed coordinate system fixed on the earth
with the z-axis vertical upwards is chosen. The equations (3.2.1) -
(3.2.3) apply to the expected values of velocities and pressures which
are considered to be stochastic processes. The 1's are therefore due to

molecular viscosity and turbulent momentum transfer [15, 62]:
=1 - p<u,u, > i,§=1,2,3
(3.2.4) Tij Tij o] i j H <y

where < > signifies expected value of the argument, is the

A
Tij

'i is the turbulent velocity fluctuation in the i

viscous stress and u
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direction. For convenience, here and in the following, frequent use of ten-
sor notation will be made, the 1,2,3 directions being equivalent to
X,¥,2. The left hand sides of (3.2.2)and (3.2.3) represent the inertial
forces on a unit volume and the right hand sides are the surface forces
acting on the same volume plus internal sources of momentum m , my. In
arriving at (3.2.2) and (3.2.3) 1is has been assumed that the vertical
velocity w is small so that only pfu and pfv are retained from

the fictitious coeriolis force. f 1is the coriolis parameter = 2 mearth'

sing¢ , where Wearth is the phase velocity of the earth's rotation and 4

is the latitude (N) of the location.

dy

X

Figure 3-1. Infinitesimal control volume.
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The isotropic normal stress in fluids is usually compressive and there-
fore denoted p for pressure (positive). The deviatoric stresses Tij,
i, = 1,2,3 are defined as usual, the first index denoting the ‘rormal

direction of the face on which the stress acts and the second, the posi-

tive direction of the stress.

An order of magnitude comparison of the inertial terms in

o~ L= oy L -
(3.2.2) and (3.2.3) 4is {llustrative. Let t, %, h, u and w be re-

presentative time, horizontal and vertical length and velocity scales.

Scaling (3.2.2) then yields

ay
u

'\a-:—'b
2

e e
=W|5=

where f w is the so far ignored component of the coriolis force and

=1

=t is equal to approximately 10" “sec at 40° latitude. 1In order to

drop T ¥ and keep the remaining terms we must have

F

=> >>ﬁ H E o~

b
H
rhb
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>

o
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=oleh

1t
=p e
B |
@plch

For a typical coastal area u = 0(0.5m/sec), Vo= 0(0.05m/sec) E- 0(10%m),
h = 0(100m) giving a corresponding time scale t = 0(2.10%sec) = 0(0.6 hr),
indeed in agreement with the above scaling relations.

Vertical equilibrium requires

2 — ==
(3.2.5) (DW)'t + (put‘WJ’x + (pvw}’y + (pw )»z + 200 v 2pwyu
-p,-etT _*

+
' Z » X Tyz,y TZZ,Z

where u& and u; are the x and y components of the earth's rotation.
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Scaling of this equation leaves only the pressure,gravity and normal stress
terms as significant. Again Toz is related to molecular viscosity and
the vertical velocity fluctuations, hence it can be neglected in comparison

with pg and we finally obtain the hydrostatic pressure condition.,

(3.2-6) p z E — pg

Along the boundaries,special conditions apply. Thus the fact that the free

surface is a material interface is expressed as the kinematical condition

D an an an _ -
@.2.7) ool - feufe i 0
z=n z=n)

where evaporation and rainfall are neglected. n = n(x,y,t) 18 the sur-
face elevation, Figure 3-2, and g; is the total or particle derivative.
At the bottom z = -h(x,y), which is assumed fixed and impermeable,the

similar condition is

D
(3.2.8) Ty (z+h)

dh dh
-t = [ll -a-; + v 'a; + W]z-_h = ()

For lateral boundaries, which are assumed vertical, (see Figure 3-3) the

flow must be continuous, implying

+
(3.2.9) uy ng ) a i=1,2
+
(3.2.10) lijk uy nj |- - 0 1,1,k = 1,2,3
where iijk is the permutation tensor, 1123 = 2312 - 1231 =1
2 = f = £ = =1 and all other elements are zero.

132 213 321
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Free
surface

Lateral
boundary

Exterior (+)
n;

Figure 3-3. Domain terminology .

Figure 3-4. JSurface force notation.
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n, is a unit vector perpendicular to the boundary directed out of the
area of interest. + and - are points just outeide and inside of the
boundary. Equations (3.2.9), (3.2.10) express that normal and
tangential velocities just outside and inside the boundary must be equal.
Dynamic equilibrium must also be satisfied on the boundaries,
see Figure 3-4. Projecting the forces for a surface element on X,y and

z—directions result in

8 8 [ ]
(3.2.11) (Tx te n.x) = pn,x Txx n.x - TYX n.Y Tex
| J z=q
g 8 [ ]
.2.12 + = - - -
& ) (Ty P n’y) -pn'y Ty Mox ™ Tyy N,y sz_ -
_ 8 8 &
. Il - + . + A = - - - +
(3.2.13) P TI nsx Ty nvy [p sz nsx Tyz nly Tzz] z
.n
and similarly for the bottom (z = -h(x,y)).
(3.2. 14) ™ -pbh = =p-71..)h_+71T _h 4+
X WX xx’ T,x yx ,¥ ZX| ek
(3.2 .15) Tb - pb h - [-T h_~(p-17._)h _ +1 ]
y Y Xy X .Y 2Y¥) 2 = -h
(3.2.16)  p°-®h _-®h = [-p+1: h_+1_h_+1 ]
X ,X Yy .Yy X2 X Yz ,¥ zz z=—h

On lateral boundaries, continuity of the stresses is again required,

3.2.17) [normal stress]r = 0

(3.2.18) [tangential stress}t = 0

In case the fluid is considered inviscid (3.2.10)and (3.z.18)
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must be relaxed and only (3.2.9) and (3.2.17 ) enforced. Finally, for

a well defined problem, the initial flow field uin must be known:

in
u;, = u i=1,2,3 X, ¥z £ 8 t =0
i

(3.2.19)

For s arbitrary geometry, the problem as formulated is not
easily solved. Numerical solutions are stymied by excessive computer re-
qQuirements and lack of information on the proper boundary conditiong .

In coastal areas that are well mixed through the water colum, a signifi-
cant simplification is achieved by eliminating the explicit dependence on
the vertical coordinate. This process is described in the following

section.

3.3 VERTICAL INTEGRATION

In shallow water bodies, the flow variation through the depth
is often less significant. In such cases, vertically integrated equations
and variables may adequately describe the situation. This approach ylelds
estimates for the transport through any cross sectioen, however, detailed
informafion on the velocity structure is lost. In the following, the
water deneity is assumed constant in the z direction, i.e. p = p(x,¥,t).
This and the assumption of relatively small vertical velocities and accel-
eration; are normally implied by the definition shallow.

The development of a boundary layer from an applied wind
stress on the surface 1s dependent on the magnitude of the vertical tur-
bulent momentum transfer. Several investigations have found the vertical
eddy viscosity falling in the range E~l - 200 cm?/sec. If the time

scale of 1 hour is retained, a notion of the meaning of the expression
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shallow in connection with wind driven circulstion is obtained from the

expression

(303.1) h = E+*t ~n 1 - 10 m

The use of vertically integrated quantities to predict dispersion of a
tracer in this situation is clearly less satisfactory because of the highly
non-uniform velocity profile, although the total transport still may be
well predicted. In two and multi-layered models, some improvement on this
point can be expected, For tidal flow, the driving force which is the
hydrodynamic pressure, acts over the entire depth, and vertically integrated
values are expected to be representative for the local velocities also,
except close to the bottom. Finally, neutrally buoyant stream flows en-
tering or leaving the area are well suited for an integrated treatment
since those flows generally are well mixed. Again, in-or outflows with
a density difference are better simulated in multilayer models.

The governing equations are integrated over the total depth
to eliminate the z-dependence. Beginning with Equatfion (3.2.1), we for-
mally write

n

ll n n n
(3.3.2) I-h p’t dz + I_hp( 1.:)’x dz + J,h(DV)’Y dz + J“h(pw)'zdz==J edz

-

Mzsking use of Leibnitz's rule [29] we may change the order

of integration and differentiation to obtain

n n
2 _ 9,2 - an 3(<h
03 2 [ o e 3 o o] Beon] 20
~h -h n -..h
? J” n ‘ 3 (=h) | |
+ pvdz — pv + p ow - pw = nq
o J 4 n o -n 9Y n b I
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Finally applying the kinematic conditions on the surface and bottom

results in

(3.3.4) (pH) . + (Pa) o+ (Pag) o = pgy

where we have introduced the integrated variables, total depth:

ul
(3.3.5) H = I dz = h+n
=h

discharges in x- and y-directions per unit width:

{(3.3.6) 9, = Jﬂ u dz
-h

n
J v dz
=h

If we let q; represent the net rate of volume addition per unit hori-

1t

(3.3.7) qy

zontal area, this result (3.3.4) is generally valid for any type of flow,
including situations with permeable bottom and evaporation or precipitation
at the free surface., The primary objective for including 9 is however
to make possible modeling of intermal sources such as the discharge from
a diffuser pipe.

The integration of the momentum equations, (3.2.2) ~ (3.2.3)

proceeds analogously:
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N N
(3.3.8) Lh (ou)  dz + J_h{(puz)‘x * (owv) o 1.dz + J

a [ _ m,3 (", 2| an
9t —h(pu) dz (pu) 3t + 3% {(mu”)dz - (pu®) '3;
z=n -h
n
3(-h 3 9 - 3(-h
+(pu’), AN L1 (ouv) dz - 24 A
- 3% 3y . z (puv) oy (puv) -1 3y
n
a M 3
+ (qu)l - (pw)l - pfq + 5= pdz - p| d
n -h YTk | JY n 3=
n
. 3(=h) _ 3 an _ 3(-h
pl_h Ix ax I-h Txxdz + Tex x Txx -h “%;_l-
n
e e, B dm
3 |y Y yx| dy Ly Y ]+ 00
n n ~h
..P";'x -
3 a " 2 a M | ? M
7Y (pqx) + " J—h (Ppu”) dz + v _h(puv) dz - pfqy + §;>J_h p dz
-3 pF'—-apF'-‘r + 1 -pﬁ-sa—ﬂ— b§11_=0
ox xx 9y x * P 9x ax

in which we have defined

n
+
J_h(Txx,x Tyx,y
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n
L

(3.3.9) oF,! = |, T dz
(3.3.10) F '= § d
o Pyx = J-h Tyx €

- M
(3.3.11) n = m dz

x oy %

For computational reasons it is more convenient to work with the
pressure in excess of hydrostatic pressure corresponding to the water level
at datum and rest.

The density may be written as a mean value plus a deviation
(3.3.12) p(x,¥,t) = Py + Apix,y,t)

and assuming the instantaneous local deviation is small compared to the

mean
{3.3.13) Ap « Po

Boussinesque's approximation [57] 1s introduced whereby the density in
all terms is replaced by the constant mean density Py This 1s a reason-
able simplification provided the real density is used in the pressure term
which now takes the form

n

(3.3.14) boF = J pdz - 3p, & h
-h

1 1 5
=p,8hntSp gn+TapgH +p H
With these definitions and approximations, the final form of the equili-

brium equation (3.3.8) becomes
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(3.3.15) g—()+g—-nu2dz+-a-—nuvd—f +_F-FY
o T dx -h Y - z qy X P XX

T. =T s
-8 pox x _ - _p 3__ 3h _Ap . dh
Jy FYX * po B Po ax BN 3x P gH ax

By complete analogy, the force balance in y-direction gives

(3.3.16) _a___()+g_ nuvdz+3—nv2dz+f
t 3t Uy ox -h 3§y Y
T'“Tb
S R IE I e A - - |
x 3y P Yy P, Y P, 3x
-4 3k _ snaa -
Py 8 H ay ax 0

with the corresponding definitions:

T}

3.3.17; F ' = F ' = d
( ) p xy L J.hTY3 z
3.3.18 ' "
( - Jds ) OFW = 'I-h Tyy dz

- n
(3.3.19) m = J m_dz

y -h y

The number of unknowns still exceeds the number of equations for our

problem. To overcome this hurdle, the currently most successfully used

empirical relations for bottom and surface friction are reviewed in order

to establish a set of constitutive equations, Previous modeling has

¢

shown that a quadratic, (in mean velocity), bottom friction law in all cases

adequately represents the damping due to the shear at the bottom. Several

similar empirical expressions, Manning, Chezy, and Darcy-Weisbach equa-
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tions {15], were originally derived from measurements of steady flow in
channels or pipes; but have been modified for two-dimensional unsteady
circulation. The quoted relationships are the most widely used and relates

shear stress to discharge per unit width as follows:

b 2 'R
.3 T = —
(3.3.20) x Cf Q(qx + qy) "
b 2 2, %% EX
s I T = +
{3.3.21) v Cf D(qx qy ) 2
where
[ 1
8 wa Darcy-Weisbach
(3.3.22) Cf = 1 & Chezy
2
C
a2
B Manning
L BYs

Values of Manning's n are only known for fully developed rough turbu-

lent flow, which fortunately is the normal case in coastal areas, as the

ulh 1+10 7

Reynolds number R = —s = 10 and the relative roughness

k v 10

ﬁi = 0.01 ~ 0.1. For fixed roughness, the friction factor Cf is there-
"

fore inversely proportional to H Noermal values of n range 0.025
- 0.040. The values of Cf for some n and depth values are given in
Table 3-1.

In other flow regimes, the use of a Moody diagram to find wa is

the best approach. Choosing as an example C_ = 0.005 and a velocity of

f
1 m/sec gives a shear stress of 5 N/m? which is considered as a large

bottom friction,
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H

Bot- {m]

tom 1 2 5 10 20 30 40 50 100
rough—

n

ness [sec

k [m] B

-3 .myg
Stones

0.07 0.025 |0.0061|0.0049 [0.0036 |0.0028 |0.0023(0.0020/0.0018 0.0017{0.0013
Small
rocks

¢.20 0.03010.0088|0.0070 [0.0052|0.0041 |0.0033|0,002810.0026 0.0024(0.0019
Dunes

0.50 0.035 - 0.0095 [0.0070 [0.0056 |0.0044|0.0039 }0.0035 |0.0033| 0.0026
1.10 0.040 - - 10.0092;0.0073 {0,0058 (0.0051 |0.0046 [0.0043]|0.0034}

TABLE 3-1: Values of Cf

The wind stress on the surface is more complicated to handle be-
cause the water surface is deformable so that waves form,and also the
length scale of the turbulent wind field is so large that the wind stress
is highly variable in time and space {17, 25].

Several investigators have derived expressions for the average
wind stress from measurements in the field [5, 16, 28, 74, 77, 79].1f

the shear stress is related to the wind speed as follows,

2

5 .
(3.3.23) T p p UIO

air

where pai is the air density, (~1.2 kg/ma) and U is the wind

r 10

speed at 10 m above the surface, then the wind drag coefficient CD has
been found to vary from approximately 0.001 and up according to the fol-

lowing relations:
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(3.3.24)

(3.3.25)

(3.3.26)

(3.3.27)

' 1.25/111:}”5 » 1077 Ujg < 1 m/sec
! os-ulf 107
.5 10 10 1< U10 < 15 m/sec Ref.[79]
-3
. 2.6 10 U10 3_15 m/sec.
1.0 * 10~° UlO < 5.6 m/sec Ref.[74]
1.0 + 1.9(1 - 3.6 )2_10-3 L} > 5.6 m/sec.
UlO 10

0.00228 + (1.0 - 7.0/U10)2 0.00263
20 < Vg < 40 m/sec

Ref.[77]

3

( 0.577 * 10 Uyg & 4.9 m/sec Ref.[28]

(-0.125 + 0.1427 U ) 1073 4.9<U) <19.2 u/sec.
| 2.62 19.2 < Um m/sec

The values given in the referenced papers are plotted in Figure 3-5. The

data in

[ 5, 74, 77 1

were for ponds or lakes,and [16,28,79]used mea-

surements on the open ocean. There 18 a significant scatter of the data

and hence of the curves used to fit the data points. Wu's relationships

based on ocean data seem to give the best overall fit. Unfortunately,

there are two discontinuities in the suggested relation for CD,(3.3.24)

which physically does not seem reasonable although some justification is

attempted

Considering the spread of the curves with a factor of

2 difference between results,it is tempting to fit one straight line

59



%0 ‘peads puim ‘SA ‘%9 qusa12144500 Boip puim G-f£ aunbrdg
[o9s/w1 %n ‘2304inS BA0QD ‘w O JO paads puIM

60

44 St 0f (74 ‘14 s/ 0/ S
| ]

e

- = e e e o e e e e e e e e e e = e —— —— — o e o —

o ———
-————

N

[9z 1 621 P

(82 °€°F) :o.._ud.:mm —
uo1o10dDiIXe AN ———-

oIOP 01 313 AMI ——

1 1 1 ] 1 1 1

[eed [-]192uB1aja) WO4) M

™~

"
.01 X 9 Jua10144302 Boup puim

\u-




relation as shown, with the equation

(3.3.28) p = {1.1+0,0536 * U} - 10 U)o in [m/sec]

For UlO = 10 m/sec, the drag coefficient is 1.64 * 10-3 and the predicted
shear stress 71° = 0.2 N/m? which is somewhat larger than the ~0.1 N/m?
normally measured in Massachusetts Bay for similar winds.T For wind speeds
ranging from 0 - 30 m/sec, we can conclude, the present state of the art only
allows us to predict the applied wind stress to within a factor of 2.
However, considering the complexity of this problem, such an error seems
tolerable.

Finally, the origin and significance of the internal stress terms

T =T ' Tyy are investigated. To close the formulation we also

xx* Txy yx *

try to express these terms as functions of the Integrated flow variables
by means of an eddy viscosity coefficient matrix. The approach,in many
ways similar to the closure of turbulent flow problems (421, is admittedly
bagsed on a physically very loose foundation; but does vield an attractive
structure reflecting many of the expected real effects, viz dissipation,
and diffusion of momentum. The vertically integrated approach is only
valid when the internal stresses are relatively small, so an exact repre-
sentation of these terms is assumed to be of minor importance. All this
trouble is directly caused by averaging the convective acceleration terms.

However, the real root of the problem is the use of eulerlan rather than

lagrangian description (in the latter, the observer follows a particle and

1+ In the range 0 - 10 m/sec, Equation (3.3.28) agrees well with some new
results by Parker and Pearce [55].
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the convective terms do not appear). We have to live with the eulerian
viewpoint in which the observer is fixed in space and propose taking a
closer lock at the implication of ensemble averaging and vertically inte-
grating an instantaneous velocity product. Without loss of generality we

may write the instantaneous local velocity components U,V as

(3.3.29) u

u + u' = ('l.-l. + ;l) + (ull + u!!l)

)

(3.3.30) v

(; + ;1) + (vn + vl")

v+v

where u,v are ensemble averages {assuming the flow field is basically

random); u', v' are random fluctuations whose ensemble means per defi-

nition are zero; ﬁ, v are the vertical average values of u, v; u,\ v'

are vertical average values of u', v'; u", v"' are vertical deviations

of u,v fromu, v ; and finally, u'", v'" are vertical deviations of
1 t

u', v' from u', ¥v'. The slgnificance of each of the variocus components

is shown in Fig. 3-6.

The product U'V is now written out in terme of its components

(3.3.31) UV = (u+u' +u"+u"ME+7 +v"+ 9"
- u;+G\_.r' +EV"'|'L-1V'"+I-.-:' ;+Gi ‘-r_l +E'I' V"'l'a'v'"

+ u" “r + " ;t + 0" v+ ou" v+ L ; + ullt Gt + u'"v'"

and we want to perform an ensemble averaging and vertical integration
of this product. Noting that the order in which these are dome is ar-
bitrary we first take the ensemble average with the result

= 11 =M + el e | + ST e no "__n
(3.3.32) <Uv>ensemble uv + uv u'v uvv o+ uv+ulv

+ U”'V' + ulnvln

62



Figure 3-6. Sketch of velocity components.

cle o
il

AN

£ =

it

instantaneous local value.

ensemble average local value.
ensemble average, vertical average.
turbulent fluctuation

vertical deviation of u from 1.
vertical average of u'. _
vertical deviation of u' from u'.
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since all terms containing only one turbulent fluctuation (") average

out to zero. Similarly, an average over depth is carried out.

(3:3.3) <DV orcemble = o + 5'9' + W 4 gTGT

where overbar means vertical average accerding to

(3.3.34) ‘ 1 " d
v 3. X hﬂ[_hxz

Again, all terms containing only one vertical deviation (") average to
zero. We can now write the total contribution from the convective termst

q Sx n
dz = X +J (<u'v'+u‘"v'">
=h

n
(3.3.35) J_h<UV>ensemb1e R

ensemble+u vi)dz

The first term in the integral on the right is the usual turbulent
Reynolds stress and the two remaining terms are momentum transfers due
to the vertical velocity distribution. The integral on the right has so
far not been related to the mean flow in a consistent and satisfactory way.
Consequently it is often neglected completely. The structure of the terms
is similar to the molecular momentum transfer process. But while the
latter is a homogeneous isotropic process characterized by the molecular
viscosity, this is not the case with turbulent motion and vertical velo-
city shear. Prandtl used mixing length theory to derive a virtual vis—
cosity for turbulent boundary layer flow [62]. In order to get a closed

formulation we postulate a similar functional relationship without

1 Note that this contribution as .in (3.3.15) - (3.3.16) is not strictiy
correct, because we started out with the ensemble averaged equations.
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invoking any mixing length theories.

T

(3.3.36) F = J {xY Jp = <(u ul) + (u, """
xixj -h xixj o i j i 73 ensemble
- Uy uj } dz
dq 9q
-—l—'i =

Eij ( E;i + ij ) 1,j = 1,2 no summing over i,}

Eij is a symmetric "eddy viscosity" coefficient matrix that depends on

the mean flow, depth, applied surface stresses and flow history. What
values actually should be used must be determined from experience or by
trial since the explicit dependence on the mentioned parameters is un-
known. In the literature 1 - 10+5m2/sec have been quoted for the prin~

cipal values of E In model applications to Massachusetts Bay, the

i -’
use of values up to 10" m?/sec has apparently not changed the results
significantly. 1In spite of the nebulous circumstances we feel that the
inclusion of inxj has several attractive properties. It allows for
internal friction and thereby energy dissipation, provided Eij is posi-
tive; it does represent actual physical proceases{although not accurately)
and it is particularly suitable for damping short wave noilse generated
by numerical methods.

AS an attempt to bring some consistency into the anisotropic case
the direction of the local mean current is chosen as the major principal
axis of Eij with the minor principal axis perpendicular thereto. This

means that in a local coordinate system with the x-axis in the direction

of the current, Eij is diagonal:
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(3.3.37) E =

The corresponding E in the global coordinate system is then found by

ij

simple rotation. If ¢ is the angle from global to local x~axes, (see

Figure 3-7) the rotation is written

(3.3.38) E, = I T

where E is the transformation matrix

cos® s8ind
(3.3.39) T =
-gind cosd

and superscript T means transpose. In [54] and [ 75], the ratio of
El to E2 was found to be in the range 10 - 60 for a tidal coast and
a lake. Locally negative values of eddy viscosity have been measured
indicating energy being fed to the mean flow by turbulent eddies; however,
this happens only under very special conditions. For large areas, the
overall effect of the internal stresses is to dissipate energy. [14, &7]
give a more detailed discussion of this topic with some examples.

We are finally in a situation where we can present a formulation
in closed form. For convenience, all the pertinent equations are given

below.

Conservation of mass
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g -4

streamline

_’x

Figure 3-7. Global and local coordinate-system.

67



3.3.40 H + + =
( ) »E qxsx qYaY qI

x and y equilibrium

(3.3.41) + (uq]’:)'x + (uqy)’y- fqy + (Fp- Fxx),x

¥

H X + Apg B h,x) - grlh’x- 0

F +
YX,¥y

3.3.42 + (v + (v + fq - F + (F -F
( ) qut (qu)’x (qu)’y qx XY, X { P YY).Y
1 s b - 1 8
+ — - - - T H + Hh - h =0
o ('lry Ty ) my 5 (p ¥ Apg 'y) gnh o

C 0

with the constitutive relations.

P 2 2p
o c
oq aq
N = —--—i =
(3.3.36) inxj Eyg ( 5;% + o ) 1,j = 1,2 no summing over i,j

The bottom and surface shear stresses are given by (3.3.20)-(3.3.21)

and (3.3.23) with (3.3.28).

3.4 Boundary Conditiomns

Defining the correct types of boundary conditions is ome of the more
critical parts of the formulation process. What prescribed wvalves rust be
given, and where? The consequence of not specifying enough is normally
the existence of non-unique sclutions whereas too much may lead to the
non-existence of any sclution, These issues are often overlooked because

the problems are formulated and solved bypeople who usually do not have
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the necessary mathematical background (anc time) te worry about the
existence and uniqueness of solutions. $till, selutions havebeen obtained
and verified with great success,which probably is due to luck and the fact
that generally well behaved physical problems are solved.

In recent years, considerable efforts have been made by mathemati-
cians to prove existence and uniqueness of fluid flow problems, notably
solutions of Navier-Stokes equations [34]. Unfortunately, such proofs
do not exist yet for our problem and are not likely to be made in the near
future. We shall therefore take the '"engineering'' approach and assume an
automatic proof if a reasonable solution is found. To that end, we have
to be reasonably certain that the prescribed boundary conditicne are
proper.

Trying to get a better feeling for what boundary conditions are ne-
cessary, we note that the present flow problem is governed by one 2-com-—

ponent vector equation which is the equivalent of Newton's 2nd law:

(3.4.1) Force = mass x acceleration
A 4
Fy = nlxy) o

The law of conservation of mass (3.3.4) 1s thus a constraint to be dis-
tinguished from an.equilibrium equation.

It is well-known that for a single particle, a solution to (3.4.1)
exists and is unique if an initial condition and either the force Fi
or the displacement xg is prescribed. The intuitive generalization to

our flow problem is then to specify an iInitial condition and the force

or the discharge which plays the role of displacement in a fluid [4 ]
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at the boundaries. The initial situation is expressed as

(3.4.2) (qx,qy) = (g, (x,y), qyo(x.y)} for all (x,y)inQand t = 0

2 is the entire interior domain and the initial time is taken as zero.

Also the initial mass must be known, thus

river

Figure 3-8: Discharge and Force Boundaries

(3.4.3) H = Ho(x,y) for all (x,y) t =0

On the boundaries there are two alternatives as previously mentioned.
Referring to Figure 3-8, we distinguish between discharge boundaries

Sq and force boundaries SF' On Sq we write

¥*
(3.4.4) Q = a9 + any qy = q
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*
3.4, = - -
(3.4.5) A5 any I t ®hx qy 9

for the normal and tangential discharges, where the direction cosines

are

(3.4.86) anx = cos (n,x) any = cos {(n,y)

and the superscript * signifies a prescribed value.

On the remaining part of the boundary, SF’ the external force,

must be given, thus

- 2 2
(3.4.7) F Fp + % F_+aq

*
F + 2a
nn XX ny vy

Q F = F
nx ny Xy nn

o  (F -F )y = F*

= 2z _ 2
(3.4.8) F (o any) ny + anx ny vy xX ne

ns nx
must hold for the normel and tangential specific force measures.
(Specific force measure is equal to a force per unit width and density).
In the idealized case of an inviscid fluid (3.4.4) and {(3.4.7)
must still hold, however Fn: must be zero since no shear can be de-
veloped and (3.4.5) can hence not be imposed either,
The continuity equation (3.3.4) is used to find the position of

the free surface. It is a mass balance equation and does therefore not

require any boundary conditions.

7l



CLAPTER &

THE WEAK FORM

The solution to the problem outlined in the previous chapter
is in general too complicated to be obtained by analytical means. The
only alternative is then to employ a numerical technique. In the finite
elemert method, the true solution of the governing equations, constraints
and boundary conditions is approximated by a function composed of piece-
wise polynomials. The rigorous mathematical procedure for developing
the integral formulation on which the finite element method, FEM, is
based, is discussed in this chapter. Actual applications of the FEM
are described in the next chapter.

Prior to the use of approximative methods it is essential to
establish means of determining how close a computed solution is to the
exact answer. For finite difference methods this has lead to Ehe im-
portant concept of consistency, i.e. the difference approximation should
approach the differential equations asymptotically as the discretization
i1s made finer. Since the finite element method generates an approxi-
mation to the exact solution of a given set of equations rather than to
the equations themselves, a completely different approach is needed. As

an example we consider the equation

(4.1) u(x) = 0 x € [a;b]

and the three trial solutioms shown in Figure 4-1.
A common approach would require (4,1) to be satisfied point by

point in [a;b]. With this requirement, ornly v;  1is acceptable. The
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error measure for u, or uy consistent with peint by point compari-

gson is given by the maximum deviation

(4.2) error = ||uf| = max {] u |}
xefa;b]

Alternatively, a less severe approach uses an average error as

measure. A simple average error is defined

b
(4.3) lu]| - J ol dx

Figure 4-1. Different types of trial functioms.

According to (4.3) both Uy and u, would have zero error, whereas
the error for u, is equal to the shaded area.

Finally, the variance or Euclidean norm is c~nsi*dered. It 1is

defined as

b ¥
b.4) ul] = U (u(x))zdx}

and does in fact belong to the class of positive norms which may be

written
b 0 }5
(4.5) [Jul]] . = U (u(x)) dx} P =1,2,3....
P a
The variance (4.4) 1s easily recognized as the p = 2
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norm. Again uy and u, cannot be distinguished from the true solu-
tion or each other for any 2 <p<w«, whereas Uy will have some error.
The 1 norm (p = 1) 1s equivalent to the geometrical mean and is nor-
mally too liberal for our purposes. Only with the max norm, (4.2), which
i1s identical with the « norm, (p = ), can u, be distinguished from
Uy e and u, is said to deviate in a set of points of measure zero. S$o
far we have listed some commonly used metrics. These can, however, all
be interpreted with an inner product representation.

b

(4.6) afu,v) = J u-v dx
a

where u belongs to the space of trial functions and v 18 a test or
weighting function. The norms given by (4.2) - (4.5) correspond to
chooeing v equal to a delta function, the sign of u, the function
u itself and up_l. The test function is restricted only to the space
of functions for which the inner product is finite.

The admissible function spaces for u and v are furthermore

derived from (4.6). Consider for example the equation

2
(4.7) tu = 2y = f£(x) xe la;b]

ox?

with the boundary conditions
(4.8) u = 0 for x=a
(4.9 u_= 0 for x=5h

' X

L is in general a differential operator, but for this example
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(4.10) L= 32

For the trial function u , the following error measure is derived

x x=h

b
(4.11) ald - £v) = | (@ .

Ja - £)-v dx - [ﬁ’x°v]

The trial function @ must satisfy condition (4.8), which is called an
essential condition. Equation (4.9) 1is a natural condition that will be
automatically satisfied. However, since we do not require u to satisfy
(4.9), we have added the possible error in (4.11). A more detailed dis-
cussion of natural boundary conditions is contained in [64]). Requiring
the error given by Equation (4.11) to be zero yields an integrodifferen-

tial formulation on which all finite element work is based:

b

(4.12) . Ia (ﬁ’xx - £) vadx - [G'x "Vl = O

Having seen how the error metric naturally leads to an equation
for the trial solution, we now turn to the question of what restrictions
must be imposed on the function spaces for u, f, and v. To simplify
the problem, we will not distinguish between solutions that only differ
in a set of points of measure zero, thus we shall exclude v from con-
taining delta functions. For most practical cases involving a contin-
nuum, this simplification ie of no consequence. However, for discrete
problems it is crucial, and these are therefore also excluded in our sub-
sequent considerations.

The minimum requirements simply assure that the Integral in
(4.12) 1is defined and finite. Thus, each of the functions a xx’ f, and

v must belong to the class of square integrable functions:
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(4.13) wiw) ewg(ﬂ) = wlwe {wiw) J wl(w) dw < @ }

0

w; is a Hilbert (or Sobolev) space [46] and is also denoted by L2.
For our purposes it is equal to the space of plecewise continuous
functions, The equivalent requirement to u is that it belongs to

Wg which has the property
(4.14) w(w)e w; @) =welww) |/, (w? (W) + w":m(w) + w‘fm(m))dmm}

The major advance from this point comes from realizing that
several equivalent forms can be derived from (4.12). The objectives
are to relax the functional requirements in order to facilitate the
construction of admissible trial functions,but also to assure that the
solution exists and is unique. It is obvious that any u satisfying
(6.7) - (4.9) also satisfies (4.12). It remains yet to be shown that
the opposite holds. This is achieved by proving existence and unique-
ness of solutions to (4.12) or its equivalent forms. These other
forms are derived by partial integration of the integrand in Equation
(4.12). Integrating once yields

b ~ ~
(4.15) J (u_ v _ - fv) dx - [u x v] = 0

. sk X X=a

Equation (4.15) shows why (4.9) 1s called a natural condition and does
not have to be satisfied explicitly. Since u < is not necessarily

¥
zero at X = a We must require v to vanish where u 1is prescribed.

However, there 1s no loss of generality as the error is eliminated by

requiring u =u at x = a. More important is the change in functional
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requirements to both u and v, that new must belong to Wi with the

property;

(4.16) wiwe W (Q) => W(w)e{W(m)[J W2 w) + v () dwce)

§

The relationship between the three spaces mentioned so far is

- — —— piecewise continuous functions — —
w° unbounded
2
CD ____________
W; unbounded
S
w2 unbounde

 ————

— — i — — —r— ——— iy ——— — — — — e

Figure 4-2. Relationship between function classes.

2 1 [
(4.17) W2 = Wz = wz = L2

which schematically is shown in Figure 4-2.

For our purposes we need not distinguish between Wi and C°
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the continuous functions,or w; and C!, the functions with continuous
first derivatives as long as these remain bounded., Clearly we have
achieved an extension of the space from which u is chosen when using
(4.15) rather than (4.12). As a general rule,this makes it easier to
find a solution - possibility of existence is improved - however, unique-
ness 1s harder to prove because the solution space is larger. First we
note that an extension of the class of functions from which u may be
chosen only occurs when the highest derivative of L 1is integrated by
parts. Secondly we postulate that the practically more optimal form is
achieved when G and v <c¢an be chosen from the same function space.
This applies to even (2m)order (self-adjoint) differential equations.
For differential equations of odd order (2m-1), there are two preferred
formulations {Gew';‘ s vewl;_l} or {{}gw“z"l, vewtzn }» For equations
of corder 2m, the optimal form is obtained by iIntegrating by parts m
times, thus {GE;WZ » vg:w; } . These equations are called the weak
formulation {34, 68 ] and constitute a "balance” between existernce
and uniqueness. More important, i and v are chosen from the same
function space w; s facilitating the application of the finite element
method. The weak form is optimal from a computational point of view
because W? is the most extensive class of functions from which both
@ and v can be chosen. We note that the weak form is equal to
Galerkins principle and variational statements when these exist. To
distinguish between problems for which solutions of the weak ferm have
been proven to be unique these are called generalized sclutions and
the weak form is called the generalized form {34, 68]. We alsc point
kA

out that homogeneous boundary conditions on QH% are natural for
ax
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kr_» m and essential for k < m.

The simple example we have just discussed illustrates how
the introduction of a general error measure logically leads to an inte-
gral transformation of the original governing differential equation.

We indicated the reasoning behind choosing the weak form and how to
derive it systematically when several equivalent integral formulations
exist. We also advanced the hypothesis that the weak form is optimal,
at least from a computational point of view, because it allows U and
v to be chosen from the largest common class of functions. Finally,
the weak form is balanced with regard to existence and uniqueness of
solutiong, and it 1s identical to the first varilation of the functional
when a variational principle exists.

The procedure outlined above 1is subsequently applied to
derive a weak formulation of the vertically integrated circulation
equations. First it is noted that an existence theorem of solutions
to the three-dimensional transient Navier-Stokes equations so far has
evaded the mathematicians, although Ladyzhenskaya [34] was able to
show unique solvability given existence, when the velocities are pres-
cribed everywhere on the boundary. Her approach has been extended by
Aranha (3] to mixed problems with either pressure or velocity
prescribed as boundary condition. Unfortunately, a rigorous proof of
either existence or uniqueness of solutions to the vertically integrated
formulation does not exist at present. A heuristic proof of these pro-
perties 18 given in the next chapter for the finite element approximate
solutions. This is still a step away from showing existence and unique-

ness of solutions to the original formulation and theoreticglly we must
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therefore verify all solutions carefully.

First the continuity equation (2.3.40) is transformed:
4.18 H <+ + - Hda = 0
(4.18) JQ{ b T S x Yy T 9l A

where {; is the interior of the domain of interest, AH ¢ L2 is an
arbitrary test function, and the special notation is used to point out
the resemblance with an admissible variationm. According to Equation
(4.18) we must require H,qI,AH e L2 and qx.qyeWi . One might con-
sider integrating the gq and qy terms by parts to relax the
X)X 'Y
continuity requirements; but as we shall see, the dynamic equations
make it impossible to achieve this improvement.

The momentum equations (3.3.41) - {3.3.42) with the boundary

conditions (3.4.4) - (3.4.5) and (3.4.7) - (3.4.8) are rewritten

1 + (o + - fq + (F -F —F
(4.19) Jq{qx.t () o+ @9y) = fa + B L <E

1 8 b ~_1 .8

* e (Tx - Tx) ) M P (p H,x *+apeH h.x) gnh’x}nqx dA
Q 0

- - X

¥ Js lony o™ Fp) + oy Fypm Fi3) day ds

F

*
+ Is {og qd‘“ny qq =~ qx} 49, ds = 0
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(4.20) [ { + (v +(v + fq - F + (F -F
' Jg‘qy’t q“)-x (qu).y I XYy X ( P yy),y
+ l'~-(TS ~% - & - l-(psv +Apghh ) - gnh }Aq dA
Po Uy Ty y Ty Py By vy
(F._-F ) - F " Jiq d
vy P ay "9y 9%

+ F +
JS {unx xy = %ny

*
+ - "
] {any q +te . q qy} &qy ds 0

In the integrals over the prescribed force boundary SF and
specified flow boundary Sq we have for convenience used the expressions

for the x and y components of force and flow (Figure 4~3):

(4.21) e ™ Onx Fagm Fpd * 0 B
4,22 F - F + F - F
(4.22) ny Onx Fxy ¥ CayFyy = Fp)

and

(4.23) 9k ° %ax 9 7 %y 9

(4.24) Q= opy G + oty 9

The existence of derivativee of the internal stresses means
that when (3.3.36) is substituted, second derivatives of the diacharges
Qs q appear. This again requires 9. qy to at least have con-

]

y

tinuous first derivatives and therefore belong to W;. The test func-
tions Aqy.&qy however still only have to belong to L2 . We would thus

in our search for a solution have to restrict ocurselves to trial func-
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tions belonging to WQZ and test functions belonging to L2. According
to previous arguments, this "unbalanced" situation is undesirable. It
is difficult to find admissible trial functions and it is also harder
to prove existence of a solution, However, if a solution is found, it
ie easier to determine whether it is unique because the trial functions
belong to a more restricted class of functionms.

It is possible to obtain a better balanced form by integrating

the terms containing the highest derivatives by parts. From (4.19) we

F s —
X s
|
|
|

(Fyy-Fp)

y
Figure 4=3, Boundary forces and discharges.
have

(4- 25) JQ{ (Fp_FXX) X - I‘yx’y} Aqdi =J§2{unx (Fp— F)CX) Aqx-anyFyqux} ds

_IQ{(FP_ FaxdBy y = Fyba, )} da

where [ is the perimeter of ¢ . Similarly for (4.20).
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(4.26) I -~ F + (F - F 1A A =
e 9{ xy,x ¥ Fp 7 Fypd gh ey

-6 F _+o (F-F )} iq ds
Jg{ ax Fxy PnyFpm Fyy)) £y

Al {-F _Bq 4+ (F-TF ) 0q _ dA
JQ{ xy By T T Byy) fay

Substituting these results into (4.19) and (4.20} we

finally obtain:

- 1 s b -
4.27) Lz[{qx,t + (uqx)’ + (uqy) - fq + -6-; ('rx - Tx) - |:|1x
1 8
- E; (p H’x + ApsHh’x)- snh’x} Aq - {(Fp- Fxx)Aqx’x
x b,y 24
J F )+ } d [ F' Aq d
- o Aq s - q 8
p ny yx nx x
Q'SF S
*y
+ JS {anx q - o .9, " 9. ﬁqx ds = 0
(4.28) JQ[ v,t + (vq ) + (qu),y + f q, + po (‘r}r Ty) my

L - -
0 (p° H + Angh ) gnh,y}aqy {-F Aqy x

+ (F-F A
(F,m Fyy) oy Ji1d

*
F_- F )}iq ds - F " Aq ds
%y Fyy~ Fp)llayds Js ny “dy
F F

*
+ Js {any q to . q9.- qy} Aqy ds = 0
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Equations (4.18), (4.27) and (4.28) are czlled the weak form.
As previously mentionedswhen solutions of the weak form have been shown
te be unique it is called the generalized form, and the solutiomns to
the classical differential equations are contained as a subset in its
solution space. Unfortunately, we are at present not able to establish
uniqueness of solutions to our system of equations. Our primary ob-
Jective is to find a solution, and relying on the fact that we are solv-
ing a well defined physical problem we shall assume it to be unique.
However, we will have to evaluate such solutions to make certain they
are reasonable and preferably real data verification should be done.

Before concluding this chapter with a closer look at the land
boundary conditions,we must introduce ome further approximation. So
far the actual forces an and Fns on a forced boundary have never
been measured and it is probably not possible to do in most cases.

The reason is,that in order to determine F F F . ,falrly accurate

xx' “xy' Tyy

current measurements are required simultaneously along the boundary
(synoptic data). This in itself is a tremendous data acquisition and
handling problem; but even worse, reliable current meters for the
ocean environment do simply not exist at present. Wiegel and Johnson
give an introduction teo current meters, measurements and their prob-
lems in their paper [78]. 1If current Information was available at the
boundary, it would anyway be easier and more direct to use those as
prescribed conditions rather than trying to derive the internal stres-
ses,

By now 1t is clear that we cannot expect to get the information

we need, however, the surface elevation, its change and thus the
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rressure farce is usually known or can be obtained with reasonable
ease. We shall therefore im view of the above and in order to get a
solution assume that Fij is zero along prescribed force boundaries.

At this point, a very pertinent question should have evolved,
and that is,why do the Fij enter in the boundary conditions when the
mean convective terms do not? Originally they all came from the same
convective inertial acceleration terms. The answer is that in an en-
semble averaged, vertically integrated formulation the inertial accele-
ration consists of the local and the mean convective accelerations,
whereas the momentum transfer due to turbulence and vertical velocity
shear are internal stresses.

This section is summarized with the equations(note 3¢ - Sp = Sq)ﬁor

conservation of mass and dynamic equilibrium:

(4.18) Jﬁ{n.t + . + q, - qI} AHdA = O
(4.29) [{a, + (Gq) _+ (4g) -~ fq+ 3+ (5 - -=m
' o Et %, x vy 'y o, x 'x X

1 s
o (PH H0glh )= gnh 3o, - ((Fpm B aq,

- By, da, )] dA-L (o P F) + oy Fy Jq, ds

q
]
s

* ®
%nx FP Aqx ds * JS {anx 9 - %ny 9~ qx}Aqx ds = 0
F q
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- - R 1 s b
(4.30) I qu,t + (qu),x + (vqy)’y-i- th + 5 (Tx ]x) m
2 o
i

Po

8
- PH_+ppghh ) - gh lAq - {-F_ A
(PH o +4pg S L { xy B9y o

+ (F -~ F_)A dA -} fa F +a (F - F )Aq_ ds
Fpm Fyylhay o] Jg nx'xy” Yny (yy™ Fplihay

q
*
+J anpr Aqy ds + L: {any q, *o
SF “q

"1 0
nx 98 ~ 9y a, ds =

Variables with superscript * are prescribed. The surface wind pres-
sure fields and the bottom elevation are assumed known. The trial
functions H, s qy and the test functions Aqx, Aqy must all be
| _
of class Wz » 1l.e. they must be continuous in Q + & and only AH
can belong to L2. We could have chosen to integrate the terms
8

p H _ Aq and ps H ~Aq_ by parts also, thereby relaxing the
1 X X sy ¥y

requirements to H from W' te L We decide not to because we

2 2°
would have to work with surface pressure gradients rather than the
pressures themselves. The poasibility of choosing H and AH from

1
L2 is really not any help anyway, since Qs qy must come from Wz.

Finally we investigate the line integrals over Sq in more

detail., Two cases are considered:

Cagse 1: Eddy Viscosity Terms Included, IJEijIl:>0, both q, —

and q prescribed.
8

In this situation the specified discharges are easily trans-
formed intc conditions on Qs qy and as was seen in the example,

this leads to a requirement of the vanishing of the test functions.
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Thus for this case, the integrals over Sq can simply be neglected.

Case 2: Eddy Viscosity Ignored Eij =0, 4q Prescribed

The boundary integrals reduce to

*
(4.31) JS - Fp Aqx ds +JS anx(qaqn)ﬁqx ds = 0
q q

x
(4.32) [s - any FpAqy ds + Js any (qn- qn) Aqy ds = 0
q q

Adding (4.31) to (4.32) yields:

*
(4.33) JS (- B, + (a7 g Ho o +o Nq) ds
q

- | @ ) e s - o
S
q

(4.34) b, = o . Aqx + any Aqy

Since prescribing means that A muet be an admissible
4 9

il

variation that is Aqn 0 on 3, , the equation is

q

automatically satisfied. Again the contributions from sq can appa-
rently be neglected. The reservation expressed by the word apparently
ie intentional because in actual applications the situation can be

quite different, and this 1s largely due to the fact that we are dealing
with a vector (velocity) rather than a scalar quantity. Since the

actual treatment is dependent on the discretization, we delay further

discussions until the finite element method is described.
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CHAPTER 5

FINITE ELEMFNT METHOD .

Briefly stated, the finite element method FEM, provides a
systematic way of generating approximate solutions to a given problem.
Its great impact on the field of numerical methods is greatly due to
the partitioning of the domain and the use of simple polynomial expan-
s.ons in each subdomain. Thug, in two spatial dinensions, the total
area is divided into subregions and in each of these a function is ap~
proximated by a simple polynomial in the coordinates X, ¥, called a
trial function. For a more gemeral discussion, the following refe-
rences are useful [ 10, 11, 80, 68]. 1In the latter it is shown that
provided the functional requirements to the trial functions are satis-—
fied,convergence of the solution is assured as the subregions are made
infinitesimal. The advantages of this method are that any (reasonable)
function can be approximated, each subregion called an element has its
own polynomial expansion independent of all other elements, and there-
fore the treatment of the entire domain is systematically handled by
surmming the contributions from each element.

In Chapters 3-4, the type of element used did not have to be
considered, which - as mentioned earlier - is one of the great advan-
tages of this method since the properties derived from the weak form
are general. To proceed, we must now make some assumptions about the
type of elements to be used, According to the weak form (4.18), (4.29)
and (4.30), both test and trial functions must be continuous and belong

to W; + The linear triangular element is the simplest satisfying
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this criterion. As our primary objective is to obtain a solution te
our problem rather than trying to optimize the solution method per se,
we choose to work with this simplest alternative and not consider
higher order elements. The main incentive for using higher order
elements lies in the improved accuracy for the same number of unknowns,
which is an area perhaps worth investigating further.

The strategy is to develop the functional relationship for
a typical element and then sum up the contributions from all elements
to obtain the system equations. Fellowing Connor [11], this element

is based on a linear expansion for the variables.

(5.1 6 = EQ% tE,Q5 +E,Q; = 9Q

- e e e e
(5.2) * ay = £,05 +£,05, + 00, = 6]
(5.3) Ho = gH] + EHy +EHS = 0K

where the superscript e designates element nodal values of the va-
riables which are fixed in space; the tilde denotes a matrix; El’ 52,

53 are normalized element coordinates (Figure 5-1), and

(5.4) ¢ = [E)E,85]

The square bracket is used to denote a row vector or matrix. The

transformation from x,y to El, 52 is easily shown to be

1

(5.5) &y " 7R

(ZA1 + bi x + a, ¥)
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where

(5.6) = % - x
(5.7) b= Y-

(5.8) L 7
(5.9) A= 30 a,- by )

(i,3,k) 1s an even permutation of (1,2,3) and refers to the element
nodes numbered counterclockwise,

Derivatives are conveniently found by chain differentiation,

e.g.

3, . 9 RS S
(5.10} 9% 9 351 QY ° 3x

Similarly, integrals are found in ihe transformed El - 52 space,
elgl:
(5.11) J dA = 24 Jl J aad g, dg

A qy 00 qy 2 1

+ Q%)
1 ¥ Y3

The general integration formula is

(5.12} J Ei gg g: dA = LR $ < 2A
A 1+ +k+2)
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These relationships for the linear triangular element actually
only serve as an illustration, because we can proceed without making an
explicit assumption of the type of element used, as long as the shape
functions satisfy the functional requirements of the problem. This is
another major advantage of the FEM, and the reason that it lends itself

so well to higher order (more accurate) approximations.

(0,0,1)
x(x3’y3)

Figure 5-1. Normalized element coordinates,

Consider any arbitrary element for which it may be assumed that
a variable is expressed in terms of shape functions ¢ and nodal

variables U,

(5.13) u o= eV = plxy) ¢ Ule)

where ¢ is a row vector relating element geometry similar to (5.4),

—

and U® is a column vector of the element nodal values of u.
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The finite element analogue of the weak equation (4.18) for
one element is found by substituting the equivalents of (5.13) for
each of the variables, resulting in (superscript T means transpose):

e T T e e e e
(5.14) (8H7) JA? (gg’t *Ox % te, Q-9 da 0

To obtain the integral over ihe entire domain § we gimply sum the
contributions from each element. However, rather than using (5.14),
we choose to work with a slightly differeat form which is derived
from (4.18) wmultiplied by g.h. This causes no loss of generality
since h 1s a known positive smooth function; but it mskes the FE
equations particularly attractive as we show shortly.

Multiplying (4.18) by gh yields

5.15 hH _+gh + gh - gh da = 0
(5.15) Igfg e PER A teha - ghq)

It is obvious that (5.15) 1s obtained from (4.18) by a redefinition

of AH:
(5.16) AH = gh AH

Applying the finite element method to (5.15) gives {(again for one

element):

T .
e T e e e
(5.17) (AH7) JA ¢ {g(gg) ¢Het 8 gh) o Q + 8(eh) ¢y Y

- e g an = o

where h are the nodal values of the depth h.

~
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To obtain the integral over the entire domain ¢ we simply sum

the contributions from each element:

(5.18) J {gh * H ¢ + gh q + gh q -gth] M dA
g ?
NMEL es. T T e e
= ] J ¢ {g(gh) ¢H  + glgh) ¢ Q
i=1 A, T DA

+ g (g o . Q- 8(eh) 97} da = 0

NMEL 1is the total number of elements. Only ¢ 15 a function of space
(x,y) and the relationship is known for a given element type. The
integrals are hence easily evaluated once the grid layout is determined.

We introduce some symbols to simplify the writing:

69 o= | wmea

1
1 T
6h)+ 2h + 2h, | 2h + 2h,+ hy | 2h + byt 2h,
gA, I I
%5 2h + 2h,* hy | 2by+ byt 2hy) by + 2hy+ 2h,
+
_Fhl h,+ 2hg | hy + 2h,+ 2h3| 2h + 2h,+ 6hy |
A
r T i
(5.20) wl - | ¢ ¢aa -— |2 1
Ay 12 L2
11 2
1
(5.21) ¢t - I ¢T b h) ¢ aa = f%i— [ h h h.a. |
. Zx A g WM Tx 2A, 121 ™% M
1

271 272 273

3%1 3f%2 3%y |
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ot
i T ~ T
(5.22) S JA g ¢ (gh) ¢ ,dA = % hiby hyby Byby

hyby  hyb, hyby

e ~y

1

| P3Py P3Py by

-

For illustration, the results for the linear triangle are also
shown. Due to the simple integration and differentiation rules for this
element, (5.12) and (5.10), the integrals are easily evaluated anal-
ytically. For more complicated elements and trial functions, numerical
integration is more attractive. We emphasize, though, that both gg
and gi pver definition are symmetric.

Equation (5.18) 18 now written.

NMEL e, T e e e e
i i i i i i i i i
.23) L @B OB G % *&G G TG T A 0

Formally carrying out the summation we obtain the system equation

T -
(5.24) (AE) {gh g,t + §x gx + Ey gy - gh 91} =0

Since the elements of AH determine the test function, which is an
arbitrary function, the terms within the braces must vanish. This re-

sults in NMNP equations, where NMNP is the number of node pofinte:

5 _ - :
(5.25) - y,t * gx gx + gy gy % 0

Next we prove an important property of M For the sake of

~h’

argument, let

(5.26)  AF = B

94



i.e. we choose the test function identical to the trial function,

Then the {irst term in (5.25) is:

| T 1,71 T oL 8 T
(5.27 WM H, = @ M HLHMH )= 5 5 (M H
1 3 [ . y2
=12 [p-uaa
2 Bt |,

Thus we have

(5.28) B M

- 2
h E J h H dA'z.O

Y]
For finite depth, h > 0 everywhere in {, the equality can

only hold if Hg { H

IQ H? dA = 0 } which would imply that H

is a zero matrix. It follows that gh is symmetric positive real and

therefore also non-singular, i.e. the determinant of gh is non-zero.
Other variables expressable according to (5.13) are the surface

dlevation n, surface pressure ps, density difference Ap, Burface

stress T° and momentum source m, Bottom friction coefficient Cf

and eddy viscosities Etj are assumed as element properties since
this gives the more precise description

In Figure 5-2, a and b, this is demonstrated by showing the domain
of Influence for a prescribed nodal or elemental value respectively.
The assemblage of the equivalent system equations for the equilibrium
equations (4.29) and (4.30) 1is completely similar. The intermediate
steps are therefore left to appendix & and the result is directly

quoted here:

T
(3:29) M e TG T P BT B G Yy 2 N

95



T
.30 M - + E + E + f M = P
(5 3 ) o .t ﬂy -TJ Q -uyy % e AQ..x

~XY ~X ~¥
where E _ , E = ET » and E ., are assembled from
~XX 7 Xy ~¥X ~Y¥Y
k kT k T
. = + i
(5.31) By J CEy 8,08, v 018518 890,

kK T
* 845 059 Eyp ¢ 18,11 dA

where Gij is the Kronecker §, and M 1is assembled from (5.20).

\\/

a Prescribed nodal value b Preacribed element value

Figure 5-2. Domains of influence.

The terms in (5.29) and (5.30) represent the contributions of iner—
tial acceleration, linear part of specific pressure force measure,
eddy viscosity (2 terms) and coriolis acceleration. The remaining
terms are lumped in Bx and gy' Since prescribed discharge condi-
tions (see (3.44) and (4.33)) imply a coupling of a and q_, we

¥y
find it more convenient to define a new nodal variable
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(5.22) Q = 09, Q ¢Qq ..... QQ]

Sl —— M
node 1 node 2 node NMNP

Equations (5.25), (5.29) and (5.30) are then simply written

(5.33) ~1 E,t 91 9 = ~H

T
S, 34 - -+ N 4 0D -
(5.34) M, 9 ¢.n EQ+CQ fQ

where we define

(5.35) P

¢
=
14
i
L=
-

(5.36) gl Eh

Mz, Gl' E1 ¢ and PQ are simply the results of merging the element
matrices according to (5.32). The structure of the finite element equa-

tions for the circulation problem is fully displayed by noting

(5.37) N, = H

~p ‘v’t

Substituting (5.37) 1inte (5.33) finally yields

{5.38) + EQ - P

My e h, ~H

It is now apparent why we chose to use (5.15) rather than (4.18). Ve
have achieved complete symmetry or skew-symmetry in the total system
coefficient matrices. This is most clearly demonstrated by showing the

partitioned form of (5.34) and (5.30).
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.39) e {[m |L 0 MREN
2x NMNP ;
NMNP 2x MNP

Recalling that both M. and EZ are symmetric positive reazl,
it is easily shown that the first coefficient matrix in {5.39) 1is also
symmetric positive and non-singular, This in fact is, at least heurist-
ically, sufficient and necessary proof that a solution to the finite
element equations exist and is unique. The proof follows immediately
from the theorems of linear algebra concerning systems of inhomogeneous
equations with a non-zero Cramer determinant, see for example [48].

The second coefficient matrix in (5.39) 1is a sum of a purely
symmetric non-negative (positive semi-definite real) matrix E and two

totally skew-symmetric matrices (G ~- §T and C) :

. T I I ;
0 g ol o 0! ¢ 0! o
(5.40) = R e e I e ma Ll e e
| | | |
GYE+C 0 E Tl o 0| ¢
eee flor e | o ler e

EH and EQ are arbitrary vectors containing the load and non-linear
contributions. 1t is emphasized that the structure of the equations
(5.34) and {5.38) or (5.39) 1is independent of choice of element
type or grid configuration.

By applving the FFM we have transformed the integral equa-

tions to a system of unon-linear ordinary differential equations in

time. Before solution methods for such systems are discussed in the
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next chapter we look at how boundary couditious are treated and the
errors associated with the FEM,

First the problem of defining the normal at region boundaries
has to be resolved. Figure 5-3 shows a physical boundary segment and
the hypothetical finite element boundary. With straight element sides,
"breaks' necessarily occur in the model boundary when a curved coast-
line is approximated,and a nodal normal direction cannot be defined to
agree with both normals of adjoining segments. Consequently, when the
tangential discharge is left free it gives rise to flow across the ad-
joining segments as sketched on Figure 5-3. This in itself is not ne-
cessarily a bad effect, in fact, it is perhaps a better simulation of
the real flow, however, there is a question of whether mass is con-
served. Considering this as the key isgue we use the criteria of con-—
servation of mass to define the nodal normal. Using the definitionson
Figure 5-4 which shows both a convex and a concave break, we find 61

by balzrcing the flow through segment 1 of length L, with flow through

1
segment 2 of length L2' To obtain a general relationship we define
a positive direction of traverse of the segments such that the area

under consideration is to the left and the normal to the right. For
a contour enclosing the domain this will be a counterclockwise sense.

The interior angle is denoted O and the angle from n to L is Gl.

Simple geometry then yields

1 1
(5.41) 79 " L, - gin (T/2 ~ 61) = 34, L, gin (7/2 - © + Bl)

which is equivalent to
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%s

Figure 5-3. Curved boundary with FE
approximation.

Figure 5-4. Definition sketches for boundary
normals. Convex and concave corners.
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(5.42) L1 cos 81 = L2 cO8 (@—81)

Solving for Bl’ we first expand the right hand side
5.43 L = 5 i i
( ) L €98 6 L, cos GcosB, + L, sin0 sin 0,

and then rearrange to obtain the final answer

L2 8in © -
(5.44) cot 91 = Ll" chos 5 0<81<w ; §~<9<2w
2}
MX=P
+
]
X = X
I-ml mk“]' Omk'-'-1 mN ] —X ] FP ] :J ----- 0 k + RS 0- -0 ]
I T | 1 1| ™1
1 k-1 | k4l N K
Tee1" " Py O My 1| K-z [Peq [0 0 ey OO O
*
0 0 1 0 »e o [x [=]o |fo0 1 oo}l
1 k-1 . _k+l N k
R M S ST [ V7S I i W6 TR
T R 8 Pe | [0 0mE 00 LO
- -t -l b - b p— -

Figure 5-5. Treatment of prescribed variable.

For 0 < %- both discharge components should be prescribed

zero since the existence of a tangential flow is physically unreasonable
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and also can introduce numerical difficulties.
A prescribed nodal value is simply treated by erasing the corre—
sponding equation in (5.39). Computationally, this is done as sketched
in Figure 5.5. If the k'th variable is prescribed, the k'th column in
the coefficient matrix M is stored, them the k'th row and column in

M are set to zero and the diagonal element set equal to one. Finally,

s i)

X

Figure 5-6. Prescribed normal discharge.

the stored column matrix is multiplied by the prescribed value x* and
subtracted from the right hand side. This procedure effectively re-
places the k'th equation by the prescribed constraint and keeps the
symmetry of M.

Finally, we show how a discharge in any arbitrary direction
can be prescribed. If we for example want to specify the normal dis-
charge q, in a point P (Figure 5.6), where the normal (given by (5.44))
has an angle 0 with the x-axis, then this is best achieved by trans-

forming the discharges in P from the global x,y coordinate system to
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a local n,s coordinate system. Simple geometry again gives

{5.45) n = xco8 84 ysing

s = x8in0 + y cos @

or

n cog § ain © x
(5.46) -

s -8in 9 cos 6 y

Since T 1s an orthonormal matrix TT =T ! » the transpose is equal

~

to the inverse of T, Hence we have

Qx T qn

(5.47) =T

Y %

To demonstrate the procedure we simplify (5.34) to

(548 Mg = T

and subatitute (5.47) in (5.48), yielding

G4 M Toe - T

The system transformation matrix T, has the form
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5.50) T = jr10 . ... .....0
0 )
: 1 :
: T )
: 1 I
: 0
0.coeveesaa0 0}

and Ql is the local discharge vector.

(5.51) G Tl Qo Q Q- Q) Q- Q- Q. Q)

node 1 node k node NMNP

The coefficient matrix is now Mz Tg which is unsymmetrical. Since
it is desirable from a computational point of view to have a symmetric

coefficient matrix, (5.49) 1s premultiplied by TS

T
(5.52) ToMy T @ = Tg B,

whick bringe the structure of the system back to what we started with,
viz. (5.48). The prescribed value of Qn can now be handled exactly the
same way as earlier discussed for a prescribed boundary value. Fortun-

ately the transformation of M

(5.53) M T. M, T

only have to be done once for a problem.
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Turning the attention towards an analysis ot errors,

we recall that convergence of the FE solution to the true so-
lution of (4.18), (4.29) and (4.30) was shown by Mihklin [46]. The
positive definiteness of the system coefficient matrix assures the exis-
tence and uniqueness of a solution. Our final concern is directed to-
wards the accuracy of the approximate solution for a given discretiza-
tion. As for the above properties, the theory only covers linear prob-
lems, a more complete treatment is left for the future.

If the order of the original differential equations is 2 m
(or 2 m-1) in spatial derivatives, then convergence occurs if and only
if the elements reproduce exactly any solution which 1is a polynomial
of degree m; this is called the conatant strain condition [68].
The measure of distance between the exact solution u of the weak form

Ae

and the optimal trial function u ieg

(5.54) a(u - uﬁs, u - uAB) E.Cz Asz(k-m) |u|2k
= c? s ™ g2

As' u~uAs) now 1s the energy inner product; C 1s a con-

where afu-u
stant depending on the construction of the element; As 1is a typical
dimension of the element e.g. the largest height; k-1 is the order of
the highest polynomial exactly representable by the element; and f, is
the data, i.e. prescribed forces. In order that any polynomial of de-
gree k-1 can be described, the basis must be uniform as As+ 0. This

is effectively a geometrical restriction which forbids arbitrarily small

angles in triangular elements. A basis is a set of trial functionsfrom
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which any function in the solution space can be formed by linear com-
bination.
Reiterating our problem with linear triangular elements, k = 2

and m = 1, thus the error measure is

As

(5.55) atu - u®, u - %) < 7 as?|g)?

and we see that the rate of convergence is proportional to As?. The
relation (5.54) holds for smooth £; but any data whoee inmer product
with the test function is finite is admissible.

In the case where f, contains a §&-function, the error can
be shown to be order of As and if a node is placed right at the dis-
continuity of f£,, the error cannot be determined in general, however,
convergence 1is still easy to prove [68]. We shall in an application
with a point source see how these theories very nicely predict the so-

lution behavior.
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CHAPTER 6

TIMF. INTEGRATION

By using the finite element method, the original continuous
problem is reduced to a system of ordinary differential equations 1in
time. To complete the model, an effective technique must be developed
to advance the solution in time from a given initial condition. The
choice of scheme depends on required features of accuracy, stability,
programmability and computational efficiency. These items have been
studied fairly thoroughly for systems of equations derived by finite
difference methods {60, 61], however, such studies have only recently
been initiated for finite element equations [50].

For the set of first order ordinary differential equations re-
sulting from our flow problem there is no real advantage of using the
finite element over finite difference methods for time integration,
especilally since there are no complex topography or boundaries to fit.
We therefore seek a scheme from the realm of time stepping or Runge-
Kutta type methods.

Many sophisticated methods have been developed. However, we
can quickly convince ourselves that not all these can be used., Our ex-
perience shows that to simulate the circulation properly in a coastal
area like Massachusetts Bay,about 300 nodes are necessary when using
the linear triangular element. Incidentally, the number of elements
NMEL is approximately 1.5 times the number of nodes, NMNP. NMMNP of
course depends on the desired accuracy of the results and the magnitude
of gradients in the area. Since there are three unknown variables in

each node, H,q and qy there is a total of 3 x NMNP ~ 900 equations
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and unknowns. To compute the circulation for a storm situation, a
period of about 5 days must be accounted for. With a semidiurnal tide
imposed we must compute the unknowns every half hour or preferably 20
times per tidal period to obtain real time accuracy. Therefore we must
solve the system of equations at least 20°2*5 = 200 times. Often this
number is increased by an order of magnitude when the stability require-
ments of the integration scheme limits the time step. Realistically,
we must reckon on solving 900 equations up to 2000 times. Even using
computers,only the simplest and fastest techniques can come into con-
sideration.

The simplest scheme is the so-called Fuler method. For lucidity
we shall first demonstrate how each of the following methods that we

shall discuss is applied to a single variable and equation of the form

(6.1) sy = 0.0

These examples are also found in most books on numerical integration
[47, 58, 60, 61 ]. We shall assume a given initial condition hence the
problem is to propagate the sclution from time t, =no- At to

tn+l = {n+l) At, although this symbolism implicitly assumes the time
step At 1is constant, it will appear as we proceed how variable At

can be incorporated. Define

(6.2) Y, = ¥ at t=t

and
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(6.3) v, = (35
t.-tn

then the Euler form of (1) is

¥y - ¥
(6.4) ‘otl 'n y

" = E(y )

n
This scheme is sometimes described as a replacement of the derivative
by a forward difference. The discretization or truncation error TE
committed in (6.4)is found by expanding Yot1 in a Tayler series, 4around

Ya ylelding a leading error:

. ¥ -y
(6.5) T o= ly - ol ooy
At
13 - f7 O +8e 5 +57 ac® § +o0@e’) - y)l
1 L)
- 5 at |y |
= 0 (at)

Because TE = 0 (At), this method 1s called a first order method.

Besides accuracy, we are Interested in knowing the stability of
a scheme. A stable scheme will not amplify a small introduced error as
the integration progresses. To investigate this property for an arbi-
trary problem and scheme is mathematically untractable. So far we have
only learned to deal in a systematic way with linear homogeneous ini-
tial value problems, i.e. disregarding boundary conditions.

To investigate the stability of the Fuler method we use the

method of von Neumann {60] and assume
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(6.6) Y41 =AY

where both )} and y, are complex quantities Indicating a modulation
of amplitude and phase of the solution. Substituting (6.6) inte (6.4)

neglecting the inhomogeneous term yields

(6.7) AY, ¥, taty, = 0
or solving for )
(6.8) l - 1~ At.

The von Neumann necessary condition for stability whern the true solu-

tion does not contain an exponentially growing function is

(6.9) Al < 1

In the example we would thus have to restrict the time increment to

the interval
(6.10C) 0 < At ¢ 2

Due to the condition (6.10),the Euler method is called a conditionally
stable scheme.
Returning now to the circulation problem we introduce the de-

finition

(6.11) X =
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which simplifies (5.34) and (5.30) to

(6.12) M. X+¢6

My 2+ G X+ E X+CyX = Py

The subscript 3 just indicates that the equations for each of the

three variables have been assembled into one system, where

(6.13) My = [ W | o |
o 0
0 | %
i | )
(6.14) ¢, = [ o | ¢ |
-~ -~ I ~
- 1. ______
I
1
] | !
_
(6.15) B, = o | o |
E > 0
SEEE EEEEEE
o | E
|
- =
(6.16) G, - g | 0
ST S
|
0 | ¢
i | ]
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and

(6.17) P, o= | B

Applying the Euler method te (6.12) results in
(6:18) My Gm XY Ae (G +E 4 C )X, - A
To investigate linear stability, we assume

(6.19) X1 = A%,

and substitute (6.19) into the homogeneous form of (6.18) leading to

(6.20) Ay Xy My X 48t {6 +E, +Ci1 X =0
or = T
X" M- At {G+E,+C.} 1X
(6.21) 2 - ~n ~ — ~3 23 ~3 ~-n
X "M X
~N .3 .n

where inT ie the complex conjugate and transpose of Kn. Since M3

is symmetric, positive real we have

T +
(6.22) gn §3 §n = my >0 M R
Similarly, we may write
=T ]
(6.23) Xs G3 Xn = 18 o, i= =T, By £R
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(6.24) X E X = e
(6.25) X C,X = ic , c

To obtain these results,we have alsc used the fact that the
inner product (X, A X) 18 real when A 1is symmetric,and purely

- -

imaginary when A is purely skew-symmetric, i.e.
(6.26) skew-symmetry <w> 854 = - a11 ¥ 1,

With these definitions, (6¢.21) 1s written
m3" ﬁu3 - 6:1(33'&:3)
B

(6.27) A

In spite of the simplicity of the Euler method, a closer discussion
of Equation (6.27) 1is illustrative . First neglect eddy viscosity
and coriolis, i.e. eq = Cq = 0 . The magnitude of the amplification

factor ) 1s then
&3
(6.28) |A] =1 -1t =] >1
oy

making the scheme unconditionally unstable! This result is somewhat
surprising because the analogous approach for finite difference approx-
imations of the hyperbolié wave equation, (the Lax-Wendroff method){47],
leads to conditional stability govermed by the famous Courant-

Priedriche-Lewy condition (2 spatial directions):

(6.29) s« B o e
/ 2gh

As 1s the grid spacing, assumed equal in x and y; H is the
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water depth, and Atcr is a critical time step often used as a
reference.

A closer look at the Lax-Wendroff scheme reveals that the con-
ditional stability is achieved by making the spatial differences of
second order accuracy. With the first order accurate scheme exactly the
same unconditional instability is found. This simple example serves
as an fllustration of the difference between FD and FE methods.
With FD, the possibility of devising combinations of time and space
differences to achieve better stability properties is very real.
Although similar strategies for FE cannot be excluded, it is much
more difficult to perceive.At least at the present stage, the spatial
and temporal discretization are uncoupled.

Our experience confirms the instability predicted by Equation
(6.28) which may be written

0 (At);At "large"
(6.30) [x] =

1+ 0 (At );4t "small”
showing that the exponential growth, causing instability, indicated
by |x] = 1+ 0 (At) [60] becomes very slow as At d1s made small.
Thus we found the scheme (6.18) mnarginally stable for the problem
of a wave propagating into a rectangular prismatic channel, when
At f.%ﬁ'atcr' The unconditional instability of the Euler scheme
applied to the iinite element equations of the wave problem is a con-
sequence of the special structure of these equations. The FEM as a

rule leads to implicit solutions for transient problems, a cost paid

for better spatial resolution and one of the main objections one
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might have against this methed.

If eddy viscosity is included, a stabilizing effect is observed
as long as At ey < 2 o4 and finally the effect of coriolis is unpre-
dictable, but probably negligible because €y is proportional to the
emall coriolis parameter f (*lo—usec-l).

On account of its poor stability feature the Fuler scheme is
discarded. The next technique considered is the trapezoidél rule.

Its application to ovr example (6.1) 18 first demonstrated:

Cnt d Cat1 n+)
(6.31) J E% dt + J y dt = J £, dt
t t t
n n n
Each term is integrated from time t, to t+1 = th + At by re-

placing the integrand with its mean value in the interval:

1 ol
(6.32) (Vo 41= Y T Ot 5 Gty mFhe (L, F D)
or
(6.33) (1 + % ag) ~Q-Yayy = A EE L 48
‘ 2 Y iia 2 n 2 V41 7 '
The truncation error is
Yy y
_ . _ ‘ntl 'n
(6.34) e = | n-%— rIRini S Sl s A Vy) |
= 0 (At?)

Note that (6.32) 1s a finite difference approximation to Equation

(6.1) at time t ll ; but we need not use the variables at this time.
2

The scheme is unconditionally stable since the substitution of (6.6)

into (6.33) 1leads to

115



1
l- > At

1
1+ 2 At

(6.35) A=

which shows that | A | < 1 for At > 0.

Using the trapezoidal rule on (6.12) yields

1
(6.36) My Kpgy™ X)) 588 (G +E+Cy) (X, +X) =
3 at @, +P,)
““atl Tn
or
1 1
(6.37) M3 + 388 (G4 + ExrCy)) X ) = (3 - 5 8c (65 + By + C )X

+-% At (P + P )
"“ntl “n

The lipear stability analysis shows

1
372 3)

1
m, +Eat (133 + e, + ic3)

m At (133+ 33+ ic

(6.38) A o=

Lo

1
m3-—2-At e3-1

1
m3+2Ate3+i

At (c3 + 33)

a3 fraj-

At (c3 + 33)

For ey = c3 = () 3

1 1
- m~- 15 At g m+ i Arg
630 PP=aex - 2P 2.3 23 .,

and thus the scheme is said to be unconditionally stable. Adding any
amount of eddy viscosity e, acts as damping,making F A [ < 1. The

trapezoidal rule seems ideally suited for our problem, it is linearly
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stable, sufficiently accurate,and simple to program. However, in the
shown form the coefficient matrix, Equation {6.37), is unsymmetric and
has the banded dimension & * NBAND x 3 (NMNP-1). NBAND 1is the size
of the band of non-zero elements in g, over and including the dia-
gonal. (Since ?1 is symmetric that is all we need to store for it.)
The largeness of the matrix is due to the fact that all variables are
solved for simultaneocusly and require a great deal of storage in the
computer. Because of the large bandwlidth it is also time consuming to

solve. TFor larger problems NMNP > 100 , these requirements become

1 ) [ 1 N
L U oo ?1
0 - §
E - -['] =
. o
1 SN SN
L‘;}L-Oforj:»i Ui-Oforj‘-i

Figure 6~1. Structure of lower and upper triangular matrices.

prohibitive and we therefore also discard this method; but note that
it has been used successfully for the same problem by Partridge and
Brebbia [54].

The major jmprovement has to come from a reduction in the
number of unknowns solved simultaneously. To achieve this we recall

equations (5.34) and (5.38)

(6.40) ¥, N +GQ = P
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{6.41) MZQ +§9+§9-P

~Q

Again using the trapezoidal rule we may formally write

- Qﬁ —-A_E'
(6.42) MiNat1 M * 32 (an+1+ 3 n) 2 8 Qun T &)

At At
(6.43) ¥, Q= M Q +55 (fqnﬂ"' 14 n) T G Mgy + 050

- At .
2 E+O - (@ + Q)
In order to solve (6.42) and (6.43) independently, we employ an

iteration technique and write

1+

- Ac Ae 1 i
(6.44) IDn+1 §1Dn + 2 (EH - ggn) + 2 (EH -G gn+1)
n n+l
i+1
(6.45) M, 9n+1 = ~2 Qn + “_ (PQn E N +_(§+§)9n)

i+1
At .1 T 1
4+ — (P + G n + (E+C) )
7 Mg, TR Ta T D Gy

The strategy is to use a straight Euler integration :

o (s} 0 o
n » Q y P and P equal to N, Q , y P and P to
~n+l’ Sn+l Hn+1 Qn+l n’ ~n gn Hn Qn

t 1
obtain Dn+1 and 9n+1' These first estimates are used to improve the
force terms on the right hand sides, the system is seolved again and so
on until the difference of successive iterates is less thar z speci-
fied tolerance. In practice,(£.44) 1is solved firat and then (6.45),
ugsing the updated N4y then returning to (6.44), etc. By this
approach we have achleved splitting the large matrix into two smaller cnec

which furthermore are symmetric. The required storage is NBAND : NMNP +

2NBAND* 2NMNFP = S5NBAND«NMNF as opposed to the previous 18 NBAND®NMNP.
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The solution of a system of the form

(6.46) MX = ¥

where E is an arbitrary non-singular matrix,can be obtained by either
inverting M by an elimination technique or by an iteration method.
When M is banded and comstant while many solutions for different 3'3
are desired, the most effective method is to factorize g into a lower

and upper triangular form [21].

(6.47) M = LU
When M 1s symmetric, (6.47) further simplifes to

(6.48) M = U U

Figure 6.1 demonstrates the form of L and U. The unknown X isg

then simply found by two successive substitutions:
(6.49) LZ = Y

(6.50) UX =

M

Banding 1s preserved in E and 9, so the solution proceeds
very efficiently and accurately once E is decomposed. As the number
of operations (multiplications and divisions) 1s approximately two
times the number of non-zero elements in E or g, we can allow an

average of 2-3 iterations before this scheme, (6.44)- (6.45), require

the same amount of computation as (6.37). Besides the time integration
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stability phenomenon which we have investigated, we must also ascertain
that the iteration process converges. For simplicity we assume that
(6.44) and (6.45) are iterated simultaneously so that we can use the
symbolism of Equation (6.37). Neglecting forcing terms, the iteration
is characterized by

i+1

1 i
(6'5;) §3 §n+l = 2 At (93 + E + E ) §n+l

Asguning a complex amplification factor,A, we have

i+ 1
(6.52) Xebl = A §n+1
and hence
(6.53) M ".’f:.ﬂ = %At Gy + 5+ Cp) Xy
or
(6.54) A o= F A °3 ¥ 1leghey)

™3
Since convergence requires |A] <1 and ) = 0(At), the time step
cannot be arbitrary. How large At may be is not known in general; but
our experience indicates that the C-F-L &tcr cannot be exceeded,

At this stage, a more accurate, TE = 0(At®), iterative predic-
tor-corrector method was developed in the search for a stabler scheme.

The predictor i1s a simple parabolic extrapolation

(6.55) §n+l = §n—-2 - 3§n—1 + 33{.11

and as the corrector we used:
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= + At 5 X -
(6.56) §n+1 En + 12 €5 §n+l + 8 En En-l)

b

Again, it is necessary to iterate because Xn+1 appears on the
right hand side and, unfortunately, with the same poor results as be-
fore. Since (6.55) - (6.56) 1s a multilevel method, involving more
than two time steps, it must be started with some other means.

Among the self-starting schemes, the Runge-Kutta methods are
probably best known. We shall here discuss the fourth-order methods,
s8ince second-order methods are very similar to combinations of the
already mentioned trapezoidal rule and Euler method. The R-K methods
are known to be relatively accurate (often more accurate than same
order predictor-correctors), however, for systems of equations, the
algebra involved in an error analysis is untractable. This is a major
disadvantage of these methods.

The procedure is best described on the basis of Equation

(6.12), which we modify slightly:

(6.57) MyX = Py -Gy X-E;X-Cy X = P,

The 4th order R-K method with the smallest error bound [58 4is then

written:

(6.58) §n+1 = En + 0.17476028 El - 0.55148053 52
+ 1.20553547 k3 + 0.17118478 kA

where
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(6.59) M, k, = At f (tn'§n)

2301
(6.60) Myk, = At B (t +0.4At, X +0.4 k)
(6.61) My ky = At P, (b + 0.45573726 At, X + 0.29697760 k

+ 0.15875966 k)
(6.62) My k, = At P, (c +At, X +0.21810038 k; - 3.05096470 k,

+ 3.83286432 k3)

Since only known information is used on the right hand sides of (6.59) -
(6.62) we can solve for n and Q independently, saving storage and
computation. The lack of error analysis makes it impossible to give
an apriorl convergence estimate on At. The R-K methods are charac-
terized by being stable for sufficiently small At but the admissible
range must be established by trial and error. Our implementation of
the &4'th order R-K-method (6.58)-(6.62) has been stable for At ap-
proximately equal to Atcr and it 1s by far the most accurate of all
schemes tried. Although this method proved itself very useful in the
initial stages of the circulation model development, there is a strong
objection against using it for larger problems. The weak point is the
need to solve the whole system of equations plus compute new right
hand sides 4 times per advance in time, which makes the method rather
siow and expensive.

Anticipating both large and long duration problems (especially
looking forward to a two layer model), the search for a faster method

went on until we finally came up with the S8PLIT-TIME method. The idea

122



is not really new, but inspired by the time staggered finite diffe-
rence methods mentioned in Chapter 2. It is however the first time
such a method is applied to the finite element equations for hydro-
dynamic circulation.

Reviewing equatiorns (6.40) and (6.41), we may isolate the
inertial and gravitational terms as the more significant, i.e. we
expect inertia and gravity to be the main forces. Doing this,we may

formally write

(6.63) Mne*t6Q = By
T
(6.64) M Q-6 n=PFy- Ey- €8

If we for a moment ignore the right hand sides, we observe that (6.63)
and (6.64) lend themselves to central differencing in time (trapezoidal
rule) if n and Q are staggered in time. To make this become clear,

we define n at times ¢t 1 ,t 1 ... and Q at times ...

LU U and approximate (6.63) and (6.64) by
(6.65) M (Dn-l% - ‘Jn—% ) + 4t G Q = AtP, (tn,gn_%. Q)
T
(6:66) M@= Q) -8t & n L = ARy (e Ling L, Q)
T A (EF D)0,
Assuming 2 given initial conditieon T\n-*;_. Qn, the solution is exe-
2

cuted by first solving (6.65) and then (6.66).
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To study stability, we introduce

(6.67) l ]
X = jn _1 X 1=/n_1 X = n .1
~n ~n- ~n+5' ~n+§ ~n+l ~n+§

l ..Q.n T ~nN %“'l
and

(6.68) (0 | ¢ G ]

) G ~ X ~Y
e
i
0o | 0
~ hy
i
1 |

allowing ue to write, (as usual ignoring PH and PQ):

(6.69) §3 §n+i = §3 En - At 9 gn

{6.70) M, X 1+ At Gy X 1—At(§+g)§n_|i

2 2

Since M, 1is regular, it has an inverse, so X ,1 can be solved for:

~3 ~n+§
. -1
671 Xyl - G-k o)X,
Substituting (6.71) 1in (6.70) vields
- T, 1o -t -
(672 My Xy = 0ty +ae G) U M) - ar(Ege C)

-]
(I - At M3G0 X,

where 1 1is the unit matrix.
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Multiplying by M

(6.73)

-1..T -1 ~1
= p— — + .
X (Ttat My G (T-At My G )X = ot My (Eg+ Cy)

~nt+l

3

i

gives

=1
(I -Le M €

4) §n

Noting the specilal structure of EA’

matrix rule

(6.74)

we may write

(6.75)

(6.76)

4

-1

I A
Q I
(1 - 8c 3 6))

The last term can be reduced;

X

~ntl

1

[

-1
(B4 G (1 - be M3 G

=1

(E;+ C) + (L - ac ' G
6 | 0
|
|
o | E+c
|
L t .
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Equation (6.68), and using the

thus

-1 |
(I - be My" G )X - At (L At M

3

-1
3

ET

4

M

"‘l_
3



- l T
0 ‘ 0
[ = (Ey+Cy
0 | Es+C
L | i
Finally, multiplying by M3 results in
T T -1
(6.77) My - At CXypy = My Ae GOX - Ac(T - A G, M-
(_E, + 93) .?.cn

To find the amplification factor, Equation (6.19) is substituted in

{(6.77) which 1is multiplied by R: and reorganized to give

-T =T T o T T =1
X MK = AtX G, X = AtX (Eg4C )X +A X G M, (Ef+C )X
(6.78) y =
=T T T
§n 53 §n at §n & §n

- At(g,+ ig )~ At e.- 1At ¢
L 4 85 3 3. 4+0 ath)
l.'ﬂ3- At (84- 185)

We introduced the notation

(6.79) X 6y Xy = g, tigg 8, 85t R
and
T
=T T =T = . . _
(6.80) RS Xy = (§n G, %Y - 8,18

where B4» 8 are arbitrary real numbers., Reglecting e

3" 73

moment yields
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- - 2 - - - { 1
m-Atg, iAtg, i} {(m3 Atg,) iﬂtgs}{(m3 Atg&)+1&tgs.
m3-ﬁt34+1btg5 {(ma-Atg&)+iAtg5}{(m3—At34)—iAthT

(6.81) A% =

hence the split time scheme (6.65), (6.66) is linearly unconditionally
stable as an initial value problem and without eddy viscosity or coriolis
terms, (Isn't analysis beautiful?) Unfortunately, we can not show that
adding eddy viscosity decreases [ Al or what influence coriolis has,
however, our experience with the split time scheme indicates that rea-
sonable values of Eij has a small stabilizing effect. On the other hand
we have not found the split time scheme unconditionally stable in prac-
tice. In fact, the maximum time step we have achieved is approximately
1.5 Atcr. We have 8o far not resolved why instability sets in; but
have nevertheless implemented the split—time scheme as the standard time
integration scheme in our circulation. Of the methods discussed,this

is the most efficient, comparing favorably to explicit finite difference
methods, but still cannot match the time steps possible in implicit fi-
nite difference methods, More research could fruitfully be iInvested

in developing an even better time integration method for the finite

element equations,and we suggest such a project for future work.
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CHAPTER 7

VERIFICATION

In this chapter, several simple problems are solved and com~
pared to the exact analytical solution. The purposes of undertaking
such a study are: 1., insure that the model is constructed correctly;

2. investigate the accuracy and stability of the model; and 3. evaluate
the relative importance of various terms.

The first example is the problem of a standing wave in a
rectangular prismatic channel shown in Figure 7-1. We consider only

the linearized, one-dimensional problem governed by the wave equation

2 2
(7.1) 9_u _ 23
at? ox?
2 2
(7.2) a’n . o2 an
at? ox?
(7.3) ¢ = gh

The channel of length L is closed at one end x = L, and at

the open end x = 0 the water level is forced up and dowm according to

(7.4) n = asint

o

where a is the amplitude, and w,1is the angular velocity of the forced

oscillation with period T.

2T
(?a 5) wf = -".I'T-
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Channel cross section

Figure 7-1. Wave in prismatic channel.
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Figure 7-2. Plan of channel with FE grid.
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The boundary condition at the solid boundary is

(7.6) u = 0 x = 1L

or equivalently

(7.7) n =0 x = L

The standing wave solution is easily found by separating the variables.

The result is (see for example [ ]):

a vgh L
(7.8) u = - - 1 &8in {wf el ¢ §'-1)} cos we t
hcosu}f-—- /gh
/gh
(7.9) n o= e cos - { ‘I"“(g—'—l)} sin w, t
L ‘,‘,’f,@"‘ L f
cos W ——
/gh

For the test, the values of the parameters are listed in
Table 7-1.

A finite element grid symmetric about the channel centerline
is constructed as shown in Figure 7-2. The symmetyy provides a {irst
check on the results whiech, if correct, must alsc be symmetric.

The relatively small amplitude ¢ %-= 0.025) 1is chosen so0
that non-linear effects are negligible. At the 3 walls, the normal dis-
charge is prescribed zero and iIn the 90° corners both discharge compenents
are required to vanish. At the open end, the surface elevation is for-
ced according to (7.4) while the discharge is left free. The problem

was solved with the split time method, starting from an initial condition
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L 200 m

h 4 m

T 200 sec.
we 0.0314159 sec '
a 0.1 m

g 9.81 m/sec’
c 6.26 m/sec
Ax 50 m

Ay 50m

NMNP 15

NMEL 16

At 5 sec

Atcr ~ 5.65 sec.

TABLE 7-1 Standing Wave in Channel

derived from (7.8) and (7.9) for t = %-. The computed surface
elevatiorsat x = L are plotted together with the analytical solution
on Figure 7-3. A similar time history of the velocity at x =0 1is
shown in Figure 7-4. One whole tidal period was computed with At=5 sec.
showing the right tendencies, but not agreeing too well quantitatively
with the exact solution. To resolve whether the error was due to the
time integration, the time step was halved and the computations repeated.

As figures 7-3 and 7-4 show, the two solutions come out practically

identical. The error is therefore attributed to either the spatial dis-
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cretization or possibly excitation of one of the eigenmodes of the

channel. Recalling the expression for the spatial error (5.54), this

can be decreased by either making the grid smaller or the data f.
smoother. We chocse the latter and increase the period of the forcing

by a factor of 3, thus T = 600 sec. and the computations are re-

peated with /[t = 5 sec. As tables 7-2 and 7-3 show the ratio

CAX error is now less than 1% over a period of more than 2T.
max value
C 1 ar 5T 71 9T 11T
| 7 = % = G| exact
0 -0.1 0.1 -0.1 0.1 =0.1 0.1
50 -0.1G28 0.1025 -0,1027 0.1025 | -0.1027 0.1026
106 | -0.1047 0.1042 -0.1045 0.1042 § =0.1046 0.1044
150 | -0.1057 0.1053 -0.1055 0.1052 | -0.1057 0.1055
200 | -0.1063 0.1056 -0.1061 0.1056 | -0.1062 0.1059
TABLE 7-2: Comparison of Computed Surface Elevation with
the Exact Solution for T = 600 sec.
T 3T 5T
2 T Cn 2T Ul exact
0 -0.05466 | 0.05446 | ~0.05431 0.05417 | -0.05431 | 0.05440
50 =0.04125 | 0.04117 | -0.04086 0.04096 | -0.04087 | 0.04114
100 | -0.02781 | 0.02772 | ~0.02751 0.02749 | -0.02749 | 0,02759
150 | -0.01388 | 0.01383 | -0,01375 0.01370( -0.01381 | 0.01384
200 0.0 0.0 0.0 6.0 0.0 0.0
TABLE 7-3: Comparison of Computed Velocities with the

Exact Solution for T = 600 sec.
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In test runs of this problem using different integration tech-

niques, the stability was preserved up to the At values glven in

Table 7-4.
Courant-Friedrichs=-Lewy Atcr: 5.65 sec.
Euler: ~0.25 sec,
Predictor-Corrector: 4 sec
Runge~Kutta: 5 sec
Split-time: 7.5 Bec.

TABLE 7-4: Critical Time Steps for Integration Methods
Applied to Simple Channel

0f all the schemes, the &4'th order Runge-Kutta method is the most
accurate., The Euler method is useless for any longer term integration
and the Predictor-Corrector method showed rather poor accuracy, pre-
sumably due to the iteration procedure. The split time scheme is as
the example showed sufficiently accurate and efficient. Hence this
method 1s chosen for further applications. Should an occasion arise
where better accuracy is needed, the Runge~Kutta scheme is easily re-
vived.,

The second example consists of modeling the propagation of a wave
into the channel shown in Figure 7-1 and 7-2, with the water initially
at rest. Again only the linearized problem governed by Equation (7.2)

is considered with the boundary conditions (7.7) and
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(7.10) r = a (1 - cos{wt)) at = =0

hoewever, now under the iritial cordition
{7.11) u,;n= 0 for all x at t w0

The exact solution to the problem is easily found since any solution to

the wave equation (7.2) can be written

(7.12) n = f&x-c¢ct)+g{x+ct)

Condition (7.7) implies, (£ = {(x-ct), ¢ = (xtct))

(7.13) £ £ (L-ct) +g r (L+ct) =0

which is integrated

(7.14) -1 [_c_i_{ dE + i J’Q.E. dr, = constant
c |t c 1dg el

or

(7.15) ~f (L ~-ct) +g (L +ct) = constant

From the initial condition, the constant 1s determined to be zero,

leaving
(7.16) £ (L-c¢ct) = g (L+ct)

The complete solution is now written

(0 e <X
C
(7.17) f{x-ct) = { a sinw(t - %—) ; t«:ZL:x
a sin{w(t - %-)} - [{2L=-x=ct) ; t> 2ltx
- c
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2L=-x

[0 -’t < x
N + »ty=
(7.18)  glx+et kN
f(2L - x - ct) 3t > -—-:'-'—

combined with (7.11),

The computed and exact solutions at different times are again
compared in Table 7-5. The split time scheme was used and Table 7-6
gives the values of the parameters. Some remarks are attached to the
results shown in Table 7-5. Except for small times, only three signifi-
cant digits are shown to avoid confusion by round off errors. The trend
of the results agree well and the average error is less than 5% over a
period of 2T =1200 sec. The (l-coswt) forcing function was chosen to
make the start-up as smooth as poseible since the value of this function
and its derivative vanishes at t= O The Runge-Kutta scheme was applied
to the same problem with a At = 2.5 sec, yielding results with an average
error of less than 1% showing that better accuracy can be'obtained if
desired.

All examples so far have been for horizontal bottom. To verify
the variable depth feature of the model, the standing wave in a channel
with sloping bottom was solved for. The longitudinal section of the
channel is showm in Figure 7-5.

The depth is given by
(7.19) h = ax

The governirg equations for the linearized problems are
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Figure 7-5. Channel with sloping bottom.

—+X

o L = Sax

]

Figure 7-6 Plan of channel with FE grid.
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(7.20) amn 4 ohu _ o

ot ax
7.21 3n an
( ) ot + o8 ax 0
n [m}
4
0.001 T
. : 4 t—- time
T/2 T 3T/2 2T
_01 001 <+ ~
—_—— axact
*+ computed

Figure 7-7. Surface elevation at X=X + L for sloping channel.

The boundary conditions are again,as for the first example, given

by
7.22 - -
( ) n asinw; t at x x, +L
(7.23) n_= © at x = x
X [}

The solution to this problem can be found in [36). Assuming

(7.24) n = Im {z(x)el¥t}
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TIME | computed exact X[m) TIME | computed exact
(m) (] (m] [w]
0.1 0.1 0 0.1 0.1
T 0.10088 0.10089 50 5T 0.102 0.101
Z’ 0.10214 0.10177 100 Zﬁ- 0.104 (.103
0.10286 0.10257 150 0.105 0.104
0.10338 0.10293 200 0.105 0.104
0.2 6.2 0 0.2 0.2
I 0.2008 0.201 50 3T 0.204 0.205
2 0.2010 0.202 100 3 0.206 0.208
0.2012 0.2022 150 0.208 0.211
0.2015 0.2022 200 0.208 0.211
0.1 B PO | ¢ 0.1 0.1
AT 0.0981 0.097 50 7T 0.0981 0.1003
a4 0.0965 0.0958 100 % 0.0968 0.1007
0.0955 0.0947 150 0.0959 0.1010
0.0952 0.0943 200 0.0959 0.1012
0.0 0.0 0 0.1 0.1
-0,00291 | -0.00311 50 -0.00444 -0.00419
T ~-0.00441 ] -0.00556 100 2T -0.00825 -0.00761
-0.00533 | -0.00726 150 -0.0106 -0.00981
~0.00677 | -0.00793 200 -0,0115 -0,0105

TABLE 7-5; Comparison of Surface Elevations for a
Propagation Wave

= 0.1lm

= 600 sec
w = 0.01047 sec”'
At = 7.5 sec.

TABLE 7-6: Values of Parameters for
Propagating Wave Example
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and K SZmF./—E-

ag
we find the equation governing r(x):

(7.25) x2g + x Loy + k¥ = 0

SKK

which is Bessels equation of zeroeth order. The solution for n is

hence written:

(.26 n == R0y e/ 3, @/ E ) e/ 2
Y, Qup? a’f )} sin wpt

where

+L x
(7.27) D = YO(Z%/ gg ) 3, (2“’1:/&_%) - v, (mF,/g-‘-’g-) 30(2‘._\1,/‘%::)

The velocity 1g easily found from Equation (7.21):

i
[m] 1
0.1 1

0.051 A
\/
0.0 . ' .

0 S0 100 150 200 250 300 350 400 450 [sec]

Figure 7-8. Surface elevation at x=L vs. time for wind example.
The arrows indicate the exact times (eqs. (7.41) and
(7.42)) of max and min occurences.

. X
(7.28) =5 “1““’}"/;% ) Yl(z“’r'acg )- Yl(sz/?; )y Qugr ﬁ?}’

cos wt
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X, = 500.0 m

L = 200.0m

oo = 0.02

a = 0,001l m

T = 200 sec

wp = 0.0314159 sec
dx = 50 m

Ay = 100 m

At = 2,0 sec.

TABLE 7-7 : Parameter Values for Sloping Channel

The finite element grid applied is shown in Figure 7-5. The split time
scheme was used and the values of the test parameters are listed in
Table 7-7. Figure 7-7 shows the excellent agreement of the computed
with the exact surface elevations at x = x, + L. Elevations and velo-
cities at other x compare equally well although not shown here.

The channel examples were all repeated with only the direc-
tion of the x and y axis changed. This gives us reasonable assurance
that both x and y components have been programmed correctly,

In the last one-dimensional test example, z constant uni-
form wind stress is applied to the channel in Figures 7-1 and 7-2. The

governing equations are

. an . _
(7-29) e + h i 0
18

B an _ %

(7-30) at e oX ph
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with the boundary conditions

(7.31) n =0 x = 0

(7.32) u = 0 x = L

and the initial condition

(7.33) n,u = 0 ¥x at t =0

To solve this system we introduce

8
T

7-34 b "'—'—x"_
( ) K Sah

whereby Equation (7.29) and (7.30) change to

9K

(7.35) e 4+ h 3; =
Ju 9K
- — + Pamtiiel -
(7.36) 5t g X 0

The boundary conditions remain the same for k but the initial condi-

tion now becomes

(7.37) K---a%‘s—l;x , u=0, O<x<Ll, t=0

After some trivial computations, the complete sclution may be written

(7.38) u = Z a_ cos {(—-+ P T }sin{(2 +p) I ¢}

p=0 P

T3 h o
(7.39) Nt ooEm e g sin {(§+ p)2E Jeos{ G + ) %E ¢}
where

143



p Ty cL
(7.40) a? = (-1) oghZn?

1
(1+2p)?

The series are rather slowly convergent (ap = (O %T )), however, at
x = L the max{mum and minimm surface displacements are easily found to-

gether with their time of occurrence.

T, L 2L
{7.41) Nmax ™ 2 ogh at t=m - { - ) m=1,3,5...
and
(7.42) oy = O at t =m ( %E-) m = 0,2,4,...

The model was run with the split time integration scheme and

the values of the test parameters are listed in Table 7-8.

1.%/p = 0.0981 m?/sec?

L = 200 m

h = 4m

c = 6,26 m/sec
nmax = (.1 m

Ax = S80m

Ay = 50 m

At = 5 gec

TABLE 7~8: Parameter Values for Wind on Channel
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The computed results for mn at x = L are plotted in Figure
7-8, wvhere also the times of equations (7.41) ;nd {7.42} have been in-
dicated. Very good agreement between amplitudes and phases 1s found.

Finally, a two-dimensional test example was carried out.
The detailed description of both numerical and analytical solution is
contained in the report [12]. Figure 7-9 shows the geometry of the
problem which is an approximation of the Massachusetts Bay. The bay
is bounded by land on three sides, but has a wide opening on the east
side towards the Atlantic Ocean. The analytical solution is governed
by the wave equation, assumes a constant depth (h = 36.6 m) and a
harmonic time dependence (standing wave). The amplitudes of surface
elevations and velocities are shown in Figure 7-10. The finite ele-
ment circulation model is adopted to the same problem. Thus non—linear
terms are dropped frem the formulation. On solid boundaries, the normal
velocity is set to zero and at the opening, the surface is forced as

a sinusoid
{7.43) n = 1.31 (l-coswt) 0 < x 5_78000. ¥y = 37000

where w = 2n/T and T 18 12.4 hours = 44640 sec. As initial con-
dition, the water is assumed at rest and n = 0 everywhere for t < O.
The Runge-Kutta method was used for the time integration with At = 200
sec. The smallest grid size is approximately 5000 rand the grid con-—
gsists of 71 elements with 48 nodes., It was found that after the

first period of T/2 the surface elevations and flow velocities were

practically periodic indicating convergence onr the standing wave so-
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lution. This rather fast convergence rate is due to the reasonable

initial condition and to the fact that the wave propagation velocity

‘1
L
TETPTTTT T IFITTI T TT rvvbﬁrrllrr Ll S T o o
e 09000 m

7 ]

N*s\\

37000 m

>
B
AR AR ARV ALY ALY AR A AR B A

i

Figure 7-9. Rectangular approximation of Massachusetts
Bay. Sketch of geometry.

(7.44) ¢ = ygh = 18.95 m/sec

is relatively large in this case. Figures 7-11 and 7-12 show the
computed high tide and maximum ebb velocities. Comparing with Figure
7-10, good agreement is found between surface contours, tidal ranges,
velocity magnitudes and directioms.

The discussed test examples provide reasonable assurance
that the model is constructed and programmed correctly. They also
constitute a basis on which modifications to this model or other

models can be compared.
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CHAPTER 8

8.1 APPLICATIONS

Several case studies are discussed in this chapter, with the
emphasis placed on solution strategles rather than results. However,
whenever possible, comparison of the computed flows against actual
field data is attempted,

The first example is taken from Massachusetts Bay shown on
Figure 8-1. The objective is to obtain an estimate of the circulation
pattern. Laying cut a good grid is essential for an efficient solutiom,
This process requires skill on behalf of the solver, which can be gained
only through experience. We shall give some guidelines which will make
it easler for a beginner to tackle a new problem., The mistakes we have

made and thelr corrections are also discussed.

8.2 THE FINITE ELEMENT GRID.

Before starting the subdivision of the domain into elements,
the outer boundary must be established. It is wize to begin any new
problem with the crudest approximation possible and then later make re-
finements as they become necessary.

Land boundaries do not cause many problems especially when
too much detail is avoided initially. For ocean boundaries, the situa-
tion is quite different. The items that must come into consideration
when choosing where to create this "artificizl"” boundary, which really
is dictated by the limited size of computers, are:

a. Where 1s data available for boundary conditilons
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s
Bathymetric map of Massachusetts Bay.

~1.

Figure 8
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S8ince some inaccuracies are to be expected in the data,
the boundary should be reasonably far away from any area
of interest;

If wind is an essential factor and its effect on the
boundary conditions are unknown, it is better to establish

the boundary at greater depths.

Usually a compromise between a, b and ¢ 1is unavoidable.

The solution accuracy would thus benefit by moving the ocean boundary

on Figure 8-2 further out to deeper water, but unfortunately no tidal

data is available there.

After having determined the perimeter, the subdivision takes

place. As a general rule, the best results are obtained if the grid is

made to resemble a flow net. Good engineering judgement is important

and the following factors must be considered.

d.

e,

Depth variations are modeled by placing nodes at the
lowest and highest points of the bottom profile.

The grid must be finer where gradients are greater

(flow net concept).

Grid dimensions should change gradually, and for accuracy
the elements must not degenerate. For triangular ele-
ments, this means as previously mentioned that nec apex
angle should approach zero and preferably they should

be almost equilateral.

Impossibilities should be avoided. This point will be

demonstrated in examples,
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Again é compronise must be found between accuracy and computatiomal
efficiency. 1In our grid of Mass Bay (Figure 8.5), we have thus not
attempted excessive detail in describing the land boundaries. However,
in three areas, a special interest is identified and the grid therefore
made finer. These are: 1. a proposed (but now abandoned) sand and
gravel dredge site approximately 13 km east of the entrance to Boston
Harbor. 2. the coast around the Pilgrim nuclear power plant site at
Rocky Point, and 3. the entrance of Cape Cod Canal into the bay.

The coastline and bottom topography are determined from the
USCGS (U.S. Coast and Geodetic Survey) bathymetric chart of the area.

The only ocean boundary information available is the pre-
dicted tide from the tide tables [73]. The closest stations are
Gloucester, Rockport, Race Point, and S.E. of Cape Cod Lighthouse,
Unfortunately, the predictions for Race Point and Cape Cod are based
on very old and limited data. Only mean tidal ranges and times of
high and low tides are listed. Although the distance between the two
stations is only abeout 19000 m, there is a reported difference in tidal
range of 0.43 m (1.4 ft), Considering the many uncertainties it is de-
cided to use an average tide as boundary condition and furthermore
assume: 1. the semidiurnal (Mz) tide accounts for all the variation,
2. straight interpolation of tidal range between Race Point and Cape
Cod Lighthouse, and between the southern and northern extremes of the
boundary is wvalid, 3. mean low water is a horizontal surface at the
ocean boundary, and finally 4., the tide is in phase all along the ocean
boundary. These simplifying assumptions are made necessary by the lack
of data. Their influence on the results can be investigated hy doing
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sersitivity studies with the model.
The model was applied to the grid shown in Figure 8-2 with

the ocean boundary condition
(8.2.1) n = a (1 - cos put)

where

(8.2.2) o = -%—1‘-

and T = 45000 sec. The amplitude varied linearly from 1l.27 m at
Cape Cod to 1.31m at Cape Ann. Figure 8-3 and 8-4 show typical pic-
tures of computed sea surface levels and velocities. Due to shoaling
effects there is a significant change in tidal range and phase from
point to point. A fine tuning of the model is possible by changing the
bottom friction or eddy viscosity coefficients.

Increasing the bottom friction tends to magnify the phase lag
in the direction of propagation. Tidal ranges are fairly insensaitive
to changes in Cf. however significant changes in the currents are no-
ticeable. Eddy viscosity has little or no effect on tidal phases.or
ranges but affects currents. Short waves are damped and therefore small

amounts of eddy viscosity E help keep the numerically generated short

ij
wave nolse down. The magnitude of Eij can be estimated in the following
way. Assume that the internal stress term ls typically a fraction, a,

of the linear pressure term:

au?

- -Q-D- .
(8.2.3) a‘* g - " Exx N2

Introducing typical scales as before
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Qﬂ ~ E A2

(80204) a * g ax XX

M.
CiE

where the derivatives now are order of 1 quantities, gives

(8.2.5) Exx'\aagg .2

Reasonable a's may range from 0.1 - 0.0l. Let for example =2 m;

U=0.2m/sec., X =5000m and a = 0.02, then

. .—_2 . = 2
(8.2.6)  E_ ~0.02 * 10 * 5% . 5000 = 10000 m?/sec.

The validity of a crude estimate 1like (8.2.5) 1s supported by model
tests. When a 1is made significantly smaller than 0.01, the results
are insensitive to internal stresses. We have so far not had sufficient
data to attempt any adjusting of Eij‘ Our use of internal stress terms
has been limited to controlling short wave noiée. usually with a < 0,02,
In the grid shown in Figure 8-2, the change in grid size around the
NOMES dredge site is thus too drastic causing entrapment of short wave
energy and consequent instability. By including some Internal stress
in this local area, the problem was eliminated.

The computed tidal range at Boston Haroour is slightly lavge-
tiian the predicted mean tidal range of 2.77 m (9.1 ft). Since this
is a more dependable observation, the boundary conditions were scaled
down accordingly. Thug, the amnlitude was prescribed as 1.25 m at
Cape Cod and 1.21 m at Cape Ann with a linear variation in between.

The bottom friction coefficient ranged from 0.01 - 0.02

according to the depth. The currernt fields at subsequent stages
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of the tide are shown in Figures 8-5 to 8-~10,and Figure 8-11 is a plot
of surface contours at high tide.

Model results have been compared with actual current meter
measurements,and sensitivity with respect to the ocean boundary condi-
tion was investigated by Christodoulou [38 ). Figure 8-12 shows a com—
parison of model results with field current measurements at the foul
area location shown in Figure 8-2, The agreement is quite good,although
no attempts were made specifically to fit the data,and is largely due to
the fact that the current measurements were made during winter. In
this season, the water column is homogenecus and a vertically integrated
model is a good approximatfon.

Since the ocean boundary condition is rather uncertain, it
is useful to investigate the sensitivity of model results to reasonable
variations In prescribed values. Figure 8-13 shows the results of such
an analysis. Changing the tidal ranges along the ocean boundary has
a marked effect on the magnitude and direction of.the currents and
the net drift. The figure also demonstrates how the model results can
be fitted to real data by adjusting the '"tilt" at the boundary.

Changing the tidal phase or the reference level along the boundary has
similar effects,

To study the influence of wind, the Mass Bay model was exer-
cised again with a constant wind stress %g = —-0.0000286 m2/sec? applied
everywhere on the surface., This correspon:s to a situation with north
wind at approximately 10 knots 5 m/sec. The real problem with

modeling wind is the open ocean boundary. It is usually not known how
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wind effects the sea surface, however, such effects are decreased as
the depth increases. This is the reasoning behind point ¢ in the be=
ginning of this chapter. Although we could not satisfy this everywhere,
the assumption was made that the wind had no effect on the surface level
at the ocean boundary, which therefore was forced according to (8.2.1)
as before, Figure B~14 shows a plot of the velocities after 120000
sec that may be compared with Figure 8-9. The wind caused little
change, at most 2 cm/sec in the velocities. Sufficient field data
for verification of wind driven circulation is not available. In
general, good prediction of mass tramsport {discharge) is expected.
However, because of the slow boundary layer development from the sur~
face, the velocities may not be realistic. The vertically integrated
formulation cannot describe wind driven circulation,other than dischar-
ges, well.

For a detailed report on the application of the model to
hurricane surges, reference is made to Pagenkopf and Pearce [53].

During the work on the Mass Bay grid, some 11) behaved ele-
ment arrangements were discovered., A typical example of an intrin-
sically bad grid configuration is shown in Figure 8-15a. On a flooding
tide, the filling of elements 1 and 4 must essentially be achieved by
the tangential flow at point A; but this will always drain one element
while filling the other, an "impossible” situation as referred to in
guldeline g. A better layout is shown in Figure 8-15b. However, to
obtain accurate results it is necessary to increase the number of nodes

and elements.
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Figure 8-5. Computed tidal currents in Mass Bay. t=90000 sec=
low tide.
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20 40 em/san

Figure B~6. Computed tidal currents in Mass Bay. t=97500 sec=
T/6 after low tide.
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20 40 em/sec

Figure 8~7. Computed tidal currents in Mass Bay. t=105000 sec=
T/3 after low tide.
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20 40 cmfsec

Figure 8-8. Computed tidal currents in Mass Bay. t=112500 sec=
T/2 after low tide=high tide.
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20 40 cmfsec

Tigure 8-9. Computed tidal currents in Mass Bay. t=120000 sec=
T/6 after high tide.

165



Figure 8-10. Computed tidal currents in Mass Bay. t=127500 sec=
T/6 before low tide.
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Figure 8-11. Surface contours at high tide.
( 112,500 sec. after cold start.)
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Figure 8-14. Computed tidal currents in Mass Bay, with an imposed
north wind of approximately 10 knots, (t /po=
~0.0000286 m?/sec?). t=120000 sec=T/6 alter high tide.
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a: bad
Figure 8-15. Grid layouts.

b: good
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Figure 8-16. Example of invalid grid.
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Another example is demonstrated in Figure 8-16. Although
the channel shown is capable of transmitting flow in the longitudinal
direction transversal flow is made impossible. Since the grid is un-
symmetric, it will cause the water surface to slope transversally,
Thig slope can grow in time since it is never equalized by transversal
flow., The channel examples of Chapter 7 also had this fault, which
was overcome by averaging over a cross section. To really avoid this

problem,at least two rows of elements should always be used.

8.3 TINTERNAL SOURCES

In the second case study, the tidal flow and the hypothetical
circulation induced by a once through cooling water system in the West
Passage of the Narragansett Bay is computed. The intent is to estimate
the influence on existing flow patterns of the cooling water intake and
discharge system of a hypothetical nuclear electric generating station
located at Rome Point (see Figure 8-17).

To determine the undisturbed tidal flow, model boundaries
were created north and south of the site and strip chart recording
tide gauges of the bubbler type were installed to provide boundary com-
ditions. Llack of time and funds were the reasons for using these rather
crude gauges with inherent poor accuracy. After 6 weeks of field
sampling, the data showed large dally varifations in tidal ranges and
relative phases. Considering all observations, an average lag time at
Plum Beach referred to Quonset Point was found to be +11+12 minutes.

The data also show differences in mean wave heights between the gauge
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locations. However, compaved with the likely error of +5 cm for the
recorders, these differences are insignificant. Mean wave heights ran-
ged between 104 cm and 111 em over the area. The recorded maximum and
minimum wave heights were 1.6 m and 0.55 m.

The two open boundaries were forced as sinusoids accarding
te (8.2.1) with the southern boundary lagging 12 minutes behind the
northern boundary. Figure 8-18 shows the grid and Tahle 8-1 lists

the parameter values for tidal computations.

a = 0.52 m

T = 45000 sec.
latitude = 41°55 N
Ce = 0.0063
NMNP = 103

NMEL = 166

At = 50 sec.

TABLE 8-1: Parameter Values for Rome Point Tidal Flow

As usual, the initial condition was taken to be no motion at t = o,
and the Runge-Kutta method was used. After less than half a tidal
cycle, the influence of the initial condition had disappeared, as for
Mass Bay. Figures 8-19 to 8-22 show the resulting flow fields at va-
rious stages of the tide. The magnitude of the currents agree well
with current meter data taken by U,S. Coast and Geodetic Survey., It

must however be emphasized that the results presented are tvpical
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7igure 8-18. Finite Element Grid Layout. The Proposed Locations
of Intake Channel and Diffuser Pipe are Indicated
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50 cwm/sec

Figure 8-19. Computed tidal currents in West Passage.
Low Tide.
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Figure 8-=20. Computed tidal
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Figure 8-21. Computed tidal currents in West Passage.
High tide.
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Figure 8-22. Computed tidal currents in West Passage.

T/4 after high tide.
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average values for a 6 week perioed and that much daily and seasonal
variation can be anticipated. Thus the current tide table [72] states
that the currents in the area are too random to predict,

The proposed cooling system for the plant would have an
intake channel and a diffuser discharge pipe located as shown in Figure
8-18. The estimated flow rate is 1350 cfs (38.23 m?/sec) which we
assumed was distributed evenly over the length of the diffuser,although
the depth varies somewhat in that area.
| At the time of this study, the pessibility of prescribing
a non-zero boundary discharge had not been developed. Consequently,
we decided to model the intake as a sink, since a source feature would
have to be Implemented anyway to handle the diffuser pipes. To get
a better idea of the plant generated flow, the two open boundaries were
closed and the tidal forcing excluded. In the first run, the intake
was modeled as a point sink and the diffuser as a line source. The
resulting current field showed a marked net flow towards the Intake
and total mgss was clearly not conserved. At the time, considerable
effort was expended before the preoblem was resolved as the spatial
truncation error described in Chapter 5. Referrring to Equation
(5.54), the inconsistency 1s however easily explained. A point sink
is a physical idealization which, Iin mathematical terms, is expressed
as a delta functlon, 6¢(x,y). However, OJ(x,y) does not belong to the
admissible function space for which (5.54) was derived, assuming the
data to be smeooth, i.e. square integrable. From the knowledge that

l6(x,y)|2 is infinite, one can therefore not conclude that the error
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is infinite. As a matter of fact, we have here exactly the case where
a node and a discontinuity in the data coincide. The error is hence
not predictable; but intuitively one would expect it to be very large.
Conceptually, the use of §-function loads is also a bad choice, since
the L2 norm is infinite, it is difficult to assure that the solution
is convergent and unique.

In the first computations, the truncation error was obvious-
1y too large. Acting as false sources it completely obscured the re-
sults and also explains why mass was not conserved. To overcome this
problem, the strategy was changed to spreading the loads over a small
area and the grid was furthermore refined slightly at the intake.
Figure 8-23 shows the equivalent distribution of point sinks used. To
model the plant outflow it was assumed that the dilution of the dif-
fuser flow was proportional to the local water depth. The rate of
volume addition and its spatial distribution is shown in Figure 8-24.
With this loading strategy, mass was conserved and the induced flow
pattern is shown in Figure 8-25, On the basis of this result it was
concluded that the plant generated flows were insignificant compared
to the tidal flow and especiélly its daily variations (mote the dif-
ferent velocity scales). No attempt was therefore made to run the
model for the combined situation of tidal flow with operating plant.

The flexibility of the finite element grid was particularly useful
in this case. The cooling water generated flow was modeled without con-
sidering buoyancy effects using the Runge-Kutta method at At = 40 sec.

After approximately 600 Bec. the solution had essentially reached its
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Figure 8-23, Intake Channel Modeled as 5 Discrete Sinks
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Figure 8-24. Diffuser Flow Modeled as Distributed
Volume Source. The Source Strength

is Represented by the Sketched "Roof-
structure".
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4 cmfsec

Figure 8-25. "Once Through" System. Currents
680 sec. After Start-up
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steady state everywhere, however some small oscillation around the

mean value was noticeable.

8.4 PRESCRIBED DISCHARGES

The last important forcing situation we consider is the
prescribed discharge boundary which could be a river but in this case
is a tidal inlet. The concern is directed towards the proposed Atlantic
Generating Station, AGS, located on the New Jersey Coast approximately
3 miles out from Beach Haven and Little Egg Inlets, see Figure B-26.
The tidal flow in the area and the influence of the plant must be de-
termined. The two tidal inlets transmit significant flow and must be
included. However, rather than modeling the inlets which extend far
inland, we have measurements of the velocities and discharges
at the entrance of both inlets [44] which may be used for boundary
conditions. At this time, work is still progressing on the project.
Figures 8-27 and 8-28 show the grids in use. The coarse grid covering
the larger area has the primary purpose of establishing boundary con-
ditions for the fimer grid which is used to study the circulation in
more detall. The coarse grid have been used to solve the tidal flow
with prescribed discharges at the inlets (Figure 8-29). The boundary
at the continental shelf is forced as a sinusoid of amplitude 0.9 m.
The two boundaries running from the shelf teo land are assumed to be
impermeable smooth walls. The lack of data make this crude approxima-
tion necessary. If the problem is well posed and the boundaries are

far enough away from the area of interest, the results are hypothesized
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Figure 8-26. Atlantic generating station, AGS, site.
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Figure 8~27. Coarse grid for circulation study at AGS. The
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Figure 8-28. Fine grid for circulation study at AGS.
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to be rather insensitive (guidelines b). At the land boundary, the
normal discharge was prescribed zero except at the location of the
inlets. Here a sinusoidally varying total discharge of approximately
3600 m¥/sec was prescribed such that high water slack occurred an
hour after high tide at the shelf. The split time scheme with

t = 100 sec. was used,

The fine grid has so far only been used to study flow in-
duced by the actual discharges through the inlets. The sea surface at
ocean boundaries was assumed fixed and the discharges through Little
Egg and Beach Haven inlets were assumed to vary sinusoidally in time
with maximm discharges of 2500 m’/sec and 2000m7/sec. Figure 8-30
shows one resulting plot of velocities, The computational time step
was At = 30 sec,

Field measurements will be used for boundary conditions and
to verify the models. The coarse and fine grid models will be "patched"
together to predict the complete tidal circulation in the neighborhood
of the proposed generating site.

A point of warning is issued with respect to prescribed
discharges. Referring to a hypothetical example shown in Figure 8-31
it is tempting to prescribe magnitude and direction of flow at nodes
A, B and C. Although this seems reasonable it will, in most cases,
lead to impossible situations where the sea surface has to be displaced
large distances to satisfy equilibrium. The correct way is to pres-
cribe only the normal discharge and allow the tangential free to adjust,

at least at B and C.
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Figure 8-~30. Small acale circulation at AGS. Prescribed inlet
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Figure 8~31, Specification of discharge,

As a final point, it is noted that for the triangular linear
elements the best accuracy is obtained at the centroid of the triangle.
This is due to the fact that in the interior of an element the trial
functions are smooth, i.e. they have derivatives, which is not the
case on element boundaries. When interpreting results, it is therefore
better to use the element centroidal values, as we have done in the

presented studies,

On an IBM 370/158 machine the sclution of a problem with 225
elements, 150 nodes and 457 time steps takes aporoximately 112 sec CPU

time and uses 180 K bytes of storage.
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CHAPTER 9

REVIEW, MULTI-LAYERED MODELS

The basic difficulties in attempting a fully three-dimensional
model are the parameterization of the constitutive equations-and specifi-
cation of the boundary conditions. By requiring better accuracy of the
models, we must also be prepared to provide more accuracy in the applied
loads, such as wind fields and tidal forces. It is even more obvious in
this case that prescribing only the surface elevation at the ocean boun-
dary is not sufficient. The actual velocities and their time variation
must be known. Although none of the existing reports on three-dimensional
models, or for that matter multilayered models, discusses these problems,
it appears that these models at best are descriptive. The models must
be calibrated before use by adjusting parameters such that actual field
measurements are duplicated. Even though the usefulpess of these models
1s somewhat reduced in this way, they can have significant impact on
establishing trends and to help organize field monitoring programs.

The only attempt on modeling three-dimensional flow is out-
lined by Leonard and Melfi [40]. They propose a steady state finite ele-
ment model for lake circulation without stratification. Their primary
objective was to discuss the numerical framework on which a model could
be based. Thus they present no results! Assumptions of incompressibi-

lity and hydrostatic pressure apparently led them to the equations

(9.1) (T + T y=-fv+20

XX,X  YX,¥

O [

(9.2)

( + T Y+ fu=20

T
X¥,X Y¥,Y

[
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(9.3) u . +vy _t+w = 0

with

(9.4) %‘ Tij = —g{n~z) + E(ui,j+ uj,i) i i = x,y

and g 1is a horizontal eddy viscosity coefficient. In the equations of
motion, the convective inertia and the vertical momentum transfer terms
are neglected. The latter assumption makes it impossible to handle a
wind stress on the surface. Even if the stated problem can be solved by
the proposed Newton-Raphson iteration technique, which yet has to be
shown, the model utility is very limited.

We quickly turn towards more meaningful works on multilayer
models. Simons prepared a report on lake circulation 65]. A multi-
layer formulation is derived using vertical integration over each layer
which can be physical or imaginary. The density is assumed dependent
on temperature only and the energy equation is used to find the tempera-
ture field.

The usual assumptions of hydrostatic pressure, incompressi-
bility and small density variations are made. The layer interfaces are
either assumed fixed (imaginary) in which case the vertical velocity
is computed or movable material surfaces (physical) implying a computa-
tion of the displacement.

The governing equations are the vertically integrated conser-
vation of mass and horizontal momentum equations for each layer. The
problems of interfacial shear and mixing or boundary conditions are not

discussed. In the case where the density stratification becomes unstable,
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a strategy is suggested in which the water column is mixed instanta-
neously. The major parts of the report are devoted to discussions of a
numerical solution technique. Finite differences are used with a leap
frog (time centered) time integration scheme. Since the leap frog method
leads to instability for dissipative terms, these are handled by simple
forward differencing. A time averaging process may also be necessary to
avoid the solution splitting characteristic of the three level leap frog
method. Several schemes for the spatial differencing are tested as
mentioned in Chapter 2. The accuracy of the results are found to be
sensitive to the orientation of the grid in relation tc the boundaries
of the basin., For the model employing two space grids simultaneously,
considerable grid dispersion is noticed starting at the boundaries where
the two grids necessarily differ. No multilayer computations are presen-
ted; but work is apparently progressing in that direction along with
extensive field measuring programs.

Along the same lines, Leendertse et al developed a three-
dimensional model which really is a vertically integrated,layered model
[ 39]. The water mass is assumed incompressible and the density is a

function of salinity only. The equations of motion for layer k are:

0.5 @) L+ O+ )+ Gy Lo Gyl
- H 1 -
fiv + 5 p’x-k(p sz)k-l (p 1xz)k+l
2 2
1 1
-4 - uE = 0
5 EE v ) Ty EE Uy
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(9.6) (Hv)’t + (Hvu)'x + (Hvz)’y + ), - W)

1
k k+§
h 1 1
+ fHu + = + (= - (=
u pp’y (pTYZ)k...L (Dryz)k_l
2 2
1 1
- = (HE - o UE = 0
p BEL V) x "o BB VD

where k 1is 1 at the surface and increases down through the layers

to b at the bottom. Subscripts kir% refer to imaginary interfaces
at which the vertical velocitles are computed from the continuity equa-
tion

b
(9.7) w - - T{HW _+ (HY) _}
k-;—' 121; X oy

At the surface the elevation is computed instead of w

b
(9.8) Ny 7T ) {(Hu)’x'l'(HV)'y}

iél

The salt concentration 1s govermed by the dispersion

equation
(9.9) (Hs)’t + (Huﬂ)’x + (HW)’y + (ws) , - (ws) 1
k"z- k-'f
- (Hst,x),x - (HDYS.Y).Y + (Ks’z)k+% - (Ks’z)k-% = 0

Aside from the fact that the structure of the eddy viscous
and dispersive terms is inconsistent (1‘xY ¥ Tyx in their formulation
and dispersion definitely does not have principal axes along x- and y-
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axes everywhere) these equations clearly point out the foremost problem
of three-dimensional models: there are many parameters that we presently
do not know how to determine. Predictive models can therefore be ruled
out for some time to come; but even descriptive models will need an
enormous amount of suppoerting field data. These issues are not discussed
or even mentioned In any of the reports orn three-dimensional models.

Having indicated their mathematical formulation, equations
(3.5)-(9.9), Leendertse et al discuss the numerical finite difference
solution scheme in some detail, The explicit leap-frog method is used
in time to avoid the messy coupling of variables by implicit methods
such as the alternating direction implicit method (ADI). The spatial
grid structure is the same space staggered grid as Leendertse used in
his two-~dimensional model, see Figures2-3 and 9-1, except for the loca-
tion of the depth values. As many of these grids are placed on top of
each other as necessary to resolve the vertical variation, Figure 9-2.
For programming reasons, the bottom must be approximated in steps of the
layer thickness causing some numerical prohlems at the iumps. The model
wag only capable of handling circulation in closed basims although work
is continuing on implementing ar open boundary condition. Several test
examples are shown with and without density stratification in two or
three dimensions. |

Two layer models are less ambitious than the three-dimensional
models discussed above, but can give very illuminating results because
there are fewer parameters to adjust.

Liggett and Lee [42] and Gedney et al [23] developed prac-

tically identical two layer models for steady state lake circulation based
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on earlier work by Welander. The equations solved for each layer of

constant density are

1
90 ) - ;] = - +
(92.10) fv Ep.x Ez u’zz
(9.11) fu =-%p +E v
o ¥ z yZ2Z
1
9.12 - - =
( ) 8 o Pz
(9.13) u_+v +w = 0
s X s¥ 12

The solution proceeds exactly as described in Chapter 2 for
the rigid 1id approximation. The explicit dependence of u, v on 2z
is found from (9.10), (9.11) and boundary conditions. Equations (9.10)
- (9.13) are integrated over each layer and then solved numerically
for average u, v and p (or equivalently surface and interface levels)
and finally w can be derived from (9.13). There are essentially only
two parameters, Ez for each layer, in this formulation, altbhough of
course many others have been neglected through approximations. Both in-
terface position and currents were found to be somewhat sensitive to
variations in Ez'

As noted in referemnce {42] , the response time of a water body,
homogeneous or stratified, may be of the order of days (we computed ap-
proximately one day for Mass Bay in Chapter 3). Steady state circulation
may therefore rarely, if ever, be attained and such results can at best
represent average long term conditions. This approach is hence less
attractive for coastal areas,

Transient two layer, two~dimensional models are starting to
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appear in the engineering literature. The situation of two distinct
layers of different density is realistic for many natural water masses
and can be reproduced in the laboratory. There is therefore a reasonable
possibility of determining the parameters involved.

Abbott and Grubert [2 ] are extending previous work to
layered flow, numerical algorithms, and representation of fronts on the
interface.

A two layer model for thermal diffusion caused by outfall of
cooling water is described by Wada [75]. The vertically integrated
equations without the coriolis effect are used. Hydrostatic pressure and
constant density in the bottom layer is assumed. Mixing or entrainment
and heat exchange between layers have been omitted. Considerable efforts
were expended to obtain reasonable dispersion coefficients. These were

determined from current measurements using Taylor's theorem

X

(9.14) K = :7;]m R (1) dr
L e

(9.15) K, = v'? . R (1) dt
where Ru and Rv are the Lagrangian autocorrelation functions of the u
and v velocities. The density in the top layer is assumed to be a linear
function of temperature. The usual quadratic interfacial and bottom shear
laws are used although no data 1s given for the coefficients.

Finite difference approximationse are used to aobtain numerical
solutions with the dependent variables staggered in space and time. For-

ward (explicit) time differences and centered space differences are em-
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ployed. The accuracy and stability is not discussed for this scheme,
which, in order to treat boundary conditions properly, has to introduce
artificial nodes outside the boundary.

Some example computations for simplified geometries are pre-
sented, but detailed information about treatment of model boundaries is
missing. Orthotropic dispersion is used, however with principal direc-
tions dictated by geometry rather than current patterns. No comparisons
with known solutions or field verificatfon are presented.

Perhaps the most Iin depth going report on two layer models is
presented by Codell [ 9]. The mathematical formulation follows the works
by Leendertseand Wada and the latter's vertically averaged equations

are used with source terms included. They are:

{(9.14) hl,t + (hlul) ,x + (hlvl),y + Vant = 0
(9.15) upe T UYLt Yyt B (hy o hy O
v u
1 i 8 ent 2 _
h1( T, Ty ) - £ v, *+ h 0
(9.16) vl,t + ulvl,x + vlvl,x +g (hl’y+ hz’y)
v v
+1 cf-tfyefu+ B2
1 7 y 1
for the upper layer. For the lower layer:
(9-17) h2,t + (hzuz).x + (h2v2),y " Veat 0
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3(02-91) 1 { b
+ > hz,x'Fz(Tx -'rx)-fvz-o
(9.19) vZ,t + u2v2,x + vzvz.y + g(hl,y + h2,y)
(py= pq)
27 P 1 i b
+ - h -= (1t - - f = 0
& o 2,Y h2(Y Ty) Y2

h1 and h2 are the layer thicknesses.

Vent is the velocity of entrainment of water from lower layer to

upper layer. The loss of momentum by entrainment in the lower layer is

ignored. These equations of motion are coupled with a thermal energy

equation for the upper layer only

(9.20) (thl),: + (1)) x + (v 1)) oy + {Dl(thl) x }

+ {Dl(thl) ¥ } y + sl'rl + 8, + vent- T2
¥

where T, and T

1 2 (assumed constant) are the upper and lower layer
temperstures, D1 is a thermal diffusivity and 81» 8, are parameters
in the heat source terms. Due to computer limitations only the one-di-
mensional version of the above equations were actually programmed as a
model, and then only used to compare with a simplified stratified model.
The simplified model consists of a one layer analog of the
two layer system. By assuming a rigid lid on the top layer, the lower

layer to be of great constant depth, and neglecting its dynamics, the

upper layer equations uncouple and reduce to, omitting subscript 1
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(9.21) h,t + (hu),x + (hv)’y + v = ()

ent
- 1 1 1 _.s -
(9.22) u’t + 1.m’x + vu.y fv + g h,x + 0 (Tx Tx + vent“L) 0
L) ...1;- i - 8 ™
(9.23) v't + uv’x + vv’y + fu+g h,y + T (Ty Ty + Vant vL) 0

where U, v are lower layer velocities which then presumably must
be known, and g' 1s the reduced gravity.

Po= Py

(9.24) g' = g°
%verage

The surface wave has been eliminated by this procedure and only the

internal wave is resolved by the model. The advantage is a large re-

duction in the wave propagation velocity by a factor of (Ap/p) with

corresponding improved numerical stability. However, the applicability

of such a model is clearly very limited.

Leendertse's space staggered grid is used with the leap frog
time method to solve equations (9.21) - (9.23). The treatment of boun-
daries both physically and numerically is extremely poor and often
overrestricts the problem. For a stream inflow, for example, prescrip-
tion of both velocity and depth is suggested, which is necessary to
specify a discharge,but is inadmissible., As noted before,this is one
reason that we chose to use the more natural variables of depth and dis-
charges. As an other example, both the normal velocity and the normal
derivative of the surface elevation are required to be zero at land
boundaries, which is inconsistent with the formulation. Although the

models developed by Codell thus are very crude, the fundamentals of the
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two layer formulation are listed in his report. Fe alsc paid some atten—
tion to the parametric expressions and tried to determine the parameters
involved, which will be discussed in the next chapter.

We conclude this review by identifylng what effort we feel
is necessary in order to make three dimensional models a useful engin-
eering tool. Our present understanding of the physical phenomena and
the state of the art of field monitoring programs raises some serious
questions as to the applicability of three dimensional models. The
numerical techniques to solve the problem may be at hand, but there are
80 many unknown parameters in the formulation that probably any result
could be produced by adjusting these properly. That is, however, a
rather useless and expensive exercise. The multilayer idealization,
specifically the two layer model, contains most promise of a predictive/
descriptive tool in the near future. The possibility of using labora-
tory experiments which readily reproduce layered flow should not be
underestimated. The full scope of a two layer model should therefore be
investigated firat. Its formulation 1s presented in the next chapter,
followed by a finite element solution strategy, sample solutions and

cofiparisons with analytical and experimental results.
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CHAPTER 10

FORMULATION OF MULTI-LAYER CIRCULATION

Since there is no difference between formulations for two or more
layers, we present here a general multilayer mathematical formulation.
Predictably, relative density differences must have large influence on
the final results and multilayered models should therefore ideally
account for variations in the density field. 1In the review chapter
attempts of including either a salt or heat balance equation were men-
tioned. To solve these additional equations numerically is, however,

a very minor problem; the major difficulties lie in specifying source
terms, spreading coefficients, boundary and initial conditions. We
choose to concentrate our efforts on the pure circulation problem and
consequently assume the density field is known. It is simple to build
later,an extra structure into the medel which will actually calculate
the densities, salinity or transport of dissolved matter.

The vertically integrated layer equations are derived from the
three dimensional equations of motion in the same manner as in the one
layer case. Some of the repeated manipulations are therefore left out.
On the sketch in figure 10-1 we define the variables for an arbitrary
layer. To obtaln the most general formulation the bottom is treated
as any other interface. Assumptions of incompressibility and constant
density over depth for each laver are made.

(10.1) P = P (%:3,t)

Conservation of mass, is expressed by

(10.2) u + v + w = g

' X Y »Z
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Layer k

X

Figure 10~1. Sketch of multi layer system and
forces on (nterfaces of layer K.
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where e represents internal sources. Integrating equation (10.2)
over layer k gives

" -+ P —
(10.3) e Y T gy T Y T Y T o Yy

where

(10.4) H =n -n

k-1
-1
(10.5) Yy = ukdz
Iy
rP'I
(10.6) qky = vkdz
Me-1
e
(10.7) q = edz
I M1

and wk, W1 are the relative normal velocities at interfaces k and

k-1, that is, w, is a net entrainment or mixing velocity between layers

k
k and k+1.

After integrating over layer k we can write the momentum equations

as
(10.8) qu,t + (uqux),x + (uqky),y = quy - (ka - Fkxx),x
1
+ + — - + -
Flyx,y pk{Tkx Ta=Dx ¥ PeMox " Pre1"k-1,x]
P
- - k-1
—_ - + —
e T " % o k-1"k-1
(10.9) qky,t + (vqux),x + (quky),y T qux + Fkxy,x
1
- (F, - + - + -
oo ™ Fiyy)y Yo My T Taeny T Py T Pt e,y
+m -wv Ek:lw v
ky T Ck'k T p ke1"k-1



where only the significant coriolis terms are retained.

If vertical accelerations are negligible compared to gravity,
which we reasonably can assume for tidal flow, the third momentum
equation reduces, as usual, to the hydrostatic pressure relationship:

Tk

1
0.1 F,_ = —- dz =
(1 0) kp pk . pdz
k-1

1 2 2
Pl T oep ety = 58e (n t =y 1D

'olo—n

k

1
k{pka + —pkogﬂk + Apkng }

1 1 2 1 2
Dk{pk—lHk T Pre8f T Zhe el

where P is the pressure at interface k, and the density is assumed

to consist of a constant average value pkO and a small variable varia-

tion Apk

Ly, E) =
(10.11) pk(y,y ) P10 + Apk(x,y.t)

Introducing Boussinesque's approximation, we obtain

Ap
(10.12) F, 1——pkuk + %ng %ggﬂkgﬂkz
P % k0
Ap
1 1.2 K2
= —=p S8k 28, 8H
oo ke 1M B T brgs k

Additional relations are

(10.13) Prcq ~ Py * Oy 8Hy

and

(10.14) F. o=t (p + I
' kp o 2o ok P17k

Equations (10.13), (10.8), (10.9) and (10.12) are the "fundamen-

tal"™ equations governing multilaver circulation, i.e. thev are based
q g 8 ¥ ¥y
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on physical laws. To solve the problem the mixing velocities w the

k;

internal stresses T F

F : and the interfacial shears 7T [
kxx’ " kxy’ ' i

kyy Kx

must be specified. To do this, with some confidence in the values

ky

employed, is not feasible at present except in very simplified situa-
tions.

Attention is called upon the fact that coastal areas seldom exhi-
bit more than two layer stratification. The obiject of multilaver
models is therefore te represent a three dimensional problem rather
than to impose a layering on the system. Consistent with this, one
visualizes the layers as having constant depths, with flow across the
interfaces. In this case w, becomes the actual normal velocity at the

k

imaginary interface k, and equation (10.3) is rewritten

o
(10.15) w =Kl
ko

At the botton W is zero and at the surface, which of course is

k-1 qu,x - qky,y + 9y

allowed to move, we have

(10.16) 3t py k-1 Ykx,x T Yky,y * 9

For small interfacial slopes w is approximately equal to the vertical

k
velocity at the same point. Obviously, it is necessary to hookkeep

the changes in density, which adds a further complexity to this kind
of medeling. In view of these difficulties we restrict ocurselves to
two layers in the remainder of this report. This restriction simpli-
fies the problem significantly; but is a sufficient extension of the

one layer model to illustrate many new phenomena.

Writing out the specific equations for the two layer case, we
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have for layer 1,

(10.17) Hl,t + qlx,x + qu,y = qI - wl
(10.18) Unye © (90 F ) = fay - Fy - B
+ Flyx,y + BI{TIX " Tox f plnl,x - pO”O,x} + I-;11:-: - w],al
(10.19) qu,t + (qulx),x * (;1qu),y B —fqlx + ley,x
- (Flp - Flyy),y + %;{Ily - TOy + pl"l.y - pOnO,Y}
+ ily - wl§l

and for layer 2, (top):
0

1
. + + = +
(10.20) HZ.t q2x,x qu,y 1, B;wl
. + (u + (u = - -
(10.21) q2x,t (u2q2x),x (u2q2y),y fq2y (F2p FZxx),x
1
+ — - -
+ F2yx,y 02{T2x Tlx + p2”2,): plnl,x}
- pl —
+
"ax T o1
(10.22) q2y,t + (vzqzx) + (v2q2y),y = _qux + F2xy,x
1
- (F, -F + {1, -1, + - }
¢ 2p ZYY),y Py 2y 1y T P22,y T P1MLy
_ 01 -
+.
¥ My 5,11

where Py is surface atmospheric pressure,and the specific pressure

force measures are
2 1% 2 g

1
(10.23) Flp ngl + Egau-ﬂl + ; _plﬂl
10 10
Ap
1 2 1 2.2 1
(10.24) sz = el + Egagaﬂz + pZOPZHZ

The pressures at the interface and bottom are obtained from equation
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(10.13):

(10.25) pl = p2 + DZOgHZ
(10.26) Po = Py + PytHly + 0,08l

Bottom shear stress is handled in the same manner as in chapter 3.

T q
Ox 2 2.1/2 "1x
(10.27) . Celag,” +ay,0) x
10 H
1
T q
10.2 2 2.1/2
(10.28) Oy _ C.(q +4q. 9 /2 "1y
P £ 71x 1y 2
10 Hl

where the friction coefficient Cf is determined from table 3-1 using

H1 as the depth.

S$imilarly, surface wind stress T, is determined with the same
relationship used for 1% in chapter 3, equations (3.3.23) and (3.3.28).

The essential difficulties are encountered in the treatment of -
the interface, A two layer idealization cannot represent explicitly
the mass and momentum exchanges taking place in the transition region
between layers. We include a shear stress i and a velocity of entrain-
ment LA at the interface to simulate these processes. However, their
functional dependence on the mean flow variables must be specified,

In most cases the effect of Tl predominates.

The standard approach relates 1. to the square of the velocity

1
differences of the two layers, namely

T
1x _ = -2 - _ =
(10.29) E;g = CI{(ul - uz) + (Vl V2)

2 1/2(62 _ “1)

and
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T

_ly _ - _ =2 = _ =212 =
(10.30) Tlo Cl (ul uz) + (v..r]L Vz) (V2 Vl)

where C1 is an interfacial shear stress coefficient; Gl’ 62, ;1, VZ

are the average layer velocity components; and < T act in the

1x* 1y

positive x, y directions on the bottom layer, figure 10-1. Experi-
ments have shown that (10.29) and (10.30) are reasonable approximations
for the interfacial shear. However, since the flow regimes in the two
layers are highly wvariable it is sometimes found that Cl 1s dependent
on the Reynolds and densimetric Froude numbers. Unlike the one layer
case where flow conditions are usually rough, turbulent, it is possible
to have all combinations of smooth - rough and laminar - turbulent
situations at the interface for two layer flow.

Unfortunately most data on Cl are obtained for cases where one
layer 1is stagnant. A very comprehensive report on published data and
methodologies for treating momentum and mass transfer in stratified
flows has recently been published [33]. When the available data is

compared, no apparent relationship between C, and Reynolds or Froude

1
numbers are evident, These dimensionless numbers are defined by
8-L
(10.31) R = "
i
(10.32) F = —
Ap a
B, L

R is a ratio of Inmertial to viscous forces, whereas'.lFﬁ is a ratio of
. . . & a
inertial to gravitational forces; u and L are velocity and length

scales; v is the kinematic viscosity; p and Ap are density and density

difference and g is the gravitational acceleration. For stratified
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flows a Richardson number is used instead of']FA

(10.33) Ri = —

For lamivar flow an inverse proportionality between C1 and R is

implied from inspectional analysis:

{10.34) Cl R for R < 2000
For turbulent flow, on the other hand, it 1is expected that Cl is a
function onFa. While (10.34) has been verified qualitatively, the

scatter of data points is too large to determine an explicit function-

ality between C andiFA. In [33] average values for Cyare found for:

1
(10.33) stagnant bottom layer Cl =4 - 10-4
(10.36) stagnant top layer C1 =15 - 10_4
(10.37) counterflow C1 =7 - 10_4

Based on Blasius' empirical friection law for turbulent boundary
layer flow over a smooth plate [62], Codell [9 ] suggest the following

relation for C

1
(10.38) ¢, = 0.0099 g4
where

(10.39) R =220

H is the depth of the fastest moving layer and Au is the absolute vel-

ocity difference. For R = 10& equation (10.38) gives Cl = 10 - 10-4

in good agreement with (10.37).

The uncertainty in C., is obviously larpe. Experience with compu-

1

tations of salt water and hot water wedges shows that interface loca-

tion is gquite sensitive to the value of C For any particular problem

1’
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we suggest that extreme values [(10.35) - (10.36)] be used to bracket
the solution or that fitting to actual field data 1s used to determine
reasonable Cl' Equations (10.38) and (10.39) seem to give reascnable

values for €., but may not be valid for large R.

1’
Interfacial mixing or mass transfer between layers is of less

importance to us in thils work which assumes the densities to be given

functions. Entrainment from a slowly moving layer into a faster moving

layer is of interest. We shall assume that the flow is suberitical

such thatIFA <1 and R1{ > 1. Under this condition, in fact for Ri > 0.5

all experiments exhibit the qualitative relation between the entrain-

ment rate and Ri:

(10.40) E = E,Ri
where
Y1
(10.41) E = e
and A
(10.42)  Ri =22
(2Au)

where Au is the velocity difference and H, is the upper layer thickness,

i
Although the inverse proportionality (10.40) is reflected by all exper-
iments there is a large spread in the coefficient Eo. The order of

magnitude of E, seems to be 1 when the shear velocity ug = (1/0)112 is
used instead of Au. Considering future developments, it is also desir-
able to be able to determine the turbulent interfacial mixing in order
to compute mass and heat transfers. Some theoretical thoughts on this

are also presented in [33].

Codell [9 ] derived an expression from a graph presented by Lean
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and Whillock [37]), finding the coefficient to be (.00208 using (10.40)
- (10.42).

Finally we resort again to the eddy viscosity concept to express
the internal stresses Fxx‘ ny, Fyy' The experience with these in
stratified flow is very limited. Recent developments in modeling of
turbulence have found more success in a different approach. The
Reynolds stresses, mass fluxes and density fluctuations are all treated
as transport gquantities leading to 10 equations and unknowns. The
triple correlations which cannot be directly related to flow parameters
are quantified in terms of turbulent energy and digsipation, Even
for a vertically integrated formulation there would be 6 flow parameters
to determine per layer, which is a doubliug of our 3 equatiomns and un-
knowns. At this time we feel that more is gained by using the "cruder"
eddy viscosity approach for coastal circulation, especially because

of the uncertainty in boundary conditions. Analogous to the one layer

case we define:

(10.43) Fkxx Ekxx ) 2qu,x

. = = +
(10.44) Fkxy Fkyx Ekxy(qu,y qky,x

) k

1,2

10.45 F = E 2
( ) kyy kyy qky,y

As noted in [33] it is interesting that due to the assumptions in
the derivation of the turbulent transport equations it is found as a
first approximation that F is related to u and not g as we
XX . X,X
have assumed, when flow in the vertical plane (2~dimensional) is con-

sidered. The internal stresses in our case also contain contributions

from the vertical velocity profile in addition to the turbulent
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stresses, and there is therefure not necessarily a contradiction between
the two approaches. When turbulence is the dominating phenomenon, it
is possible that (10.43) - (10.45) represcent the actual process rather
poorly.

The values of the eddy viscosity coefficients can he estimated
in the same manner as indicated in chapter 3. The importance of
internal stress terms is not known in general, but expected to be small.

All parameters for a first approximation have now been expressed
in terms of the mean flow. Specification of mode) boundary conditions
remains.

Exactly as was the casc for one laver circulation, information
about the discharges or forces is nceded at boundaries. At discharge

boundaries S, and S, the normal and tangential discharges are pre-

1q 2q
scribed.
(10.46) q, = q, *
kn kn on Skq for k = 1.2
4 = *
(10.47) %o Uy

At land boundaries, the prescribed values qkn* and qks* are usually
zero. For a stream cennecting to the area qk“* is in general a time
dependent function.

Ocean boundaries should, as discussed before, preferably have
prescribed discharges also. In many cases the cffect of internal
stresses must however be neglected in order that pressure be used as
specified condition. Pressure is easily translated to layer depths,
whence we obtain

= * H o= H * 6 = 2
(10.48) ka ka‘ ot lk Pk o qu, I 1,



An often overlooked but important item in the problem formulation
is the initial condition. A two layer system obviously has more degrees
of freedom than the one layer system and specification of reasonable
initial conditions therefore become more critical. Both discharges and
layer depths must be known at some initial time, t = O:

(10.49) Bex® Uy = Ikx0® ky0

at t=0 for all x,y in Q and k = 1,2

(10.50) Hk = HkO

Because it generally requires more time to get rid of the effects of
imposed initial conditions it is advantageous to choose these carefully,
Summarising this chapter, the two layer formulation uses the
vertically Integrated variables: layer depths and discharges, governed
by the equations (10.17) - (10.22). Pressure forces are given by
(10.23) - (10.24). Bottom friction is derived from (10.27) - (10.28)
with table 3-1. Surface wind stress is approached as in chapter 3.
Interfacial shear and mixing can as first approximations be determined
from equations (10.29) - (10.30), (10.35) - (10.37) and (10.40), (10.42)
with a coefficient of 0.0021. Finally, the boundary and initial con-
ditions must be specified according to (10.46) - (10.48) and (10.44)

- (10.50).
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CHAPTER 11

WEAK FORM AND SOLUTION SCHEME

11.1 WEAK FORM OF TWO LAYER FLOW EQUATIONS

The transformation of the two layer equations into their weak
form proceeds in exactly the same way as described in Chapter 4, and there-

fore we just write down the result here,

Layer 1. {Bottom)

+ wl} MH) dA = O

(11.1.1) IQ{Hl,t T lxx T Uy,y T 0

(llol.Z) I [{ql ,t + (ulql (ulqu) fql

oy ¥y

1 - -
- Bi (Tlx Tox + plnl.x N pono,x) T Mx + wlul} Aqlx

- (¥ + ¥ . Aqlx’y] dA +

ip lex) Aqlx,x lyx

*

S, %nx F1p Bdyp 98 -

1F

JS o (F, _-F,)+a F }+{a

1q P ny “yx %x 9in” nyqls qlx}].

Aqlx ds = 0

(11.1.3) Igl{qu,t + (qulx)’x + (quly) + fq,,

sy

1
- = - + - + } A
01(T1y Toy plnl,y o O.Y) mly v v ql

+F -F, ) A

1xy M1y,x T F1p7 Fiyy ] da #

y,y
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1F
S.lq [{U- Xy ny( 1yy lp)J {anyqln + C‘nx qls
Aql ds = O

o
11.1.4 H, + - S =
( ) Iﬁ{ 2,t qu,x + q2y vy 1 + w1} aHZ da =90

(11.1.5 + (u a - -
) ng{q2x,t (u2q2z),x + (u2 qu) quy

2q
qux de = 0
11.1.6 + v -
( ) fn[{qzy’t ("2‘12 (quzy) oy + fq,
(sz 1y+ Py Mpy” P1Ny y) m2 - } quy +
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9

JS [{anx (FZxx_ F2p) + any F2yx} * {anx an-anquS*

Y

13

*
qzx} ]‘



+F dA +

2xy B92y,x 7 Fap™ Fayy) 29py 4]

*
Is Uny Fop 89py ds -
2F

[{o +o

- 1
ny q2n nx42s q2y"}

g nx Fny + Or'ny (FZyy_ FZp)} t o ‘
2q

ﬂqzy ds = 0

The integrals over Skq should theoretically vanish. However, when the
finite element method is applied with a fairly coarse grid, a discrepancy
between segmental and nodal normals exists with linear triangles. The
correct definition of the nodal normal direction was discussed in Chapter 5,
and the Skq boundary integrals contain corrections which vanish, in the
limit, as the grid is refined.

The functional requirements are as before that Hk, Uy
1
qky’ ﬁqu and Aqky belong to w2 whereas only ﬂHk can be chosen

[}

from the extended space W2 .

11.2 FINITE ELEMENT EQUATIONS

The application of the finite element method is again mercly
a repetition of the procedure described in Chapter 5. Linear trianglrs
are the simplest elements satisfying the continuity condition imposed on
trial and test functions. Substituting these expansions into the weak

equations and carrying out the area integration results in

(11.2.1) M «H = P
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(1.2.2) M, 0Q = Py
and

(11.2.3)  MH, = Py
11.2.4) M, Q = Py

The M and M2 coefficient matrices are the same as defined in Chapter

5. and H2 are the nodal values of layer depths Hl and H2 . AS

0
before, we define a combined nodal discharge vector (Equation (5.32))
for each layer Ql’ Q2 in order to treat boundary conditions properly.

The load vectors P

P EQI’ EHZ and P are functions of §1, §2’

-Q2
Q,» Q, and external forcings.
It 1s convenient to use the same FE grid for upper and

lower layers. Different grids could be used but would necessitate an

interpolation of variables between the grids.

11.3 TIME INTEGRATION.

The split time method is applied to the FE equations with
the layer depths defined at times... t - % A, t + %-At +2o and dis-

charges at times .., t, t + At ... . Then we may write

{(11.3.1) MH 1, + At P

MH l, =
~ ~1(nt 2) ~ ~1(n 2) -Hl
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(11.3.2)  MHye dy = My L)+ ot Py
and

Ar3.3) M Qe = N gt iy
(11.3.4)

M Lty = Mo Qo T ot Py

Assuming the values of Bl(n— %) R §2(n- %) R gln and 92n are glven
the solution is propagated by first solving (11.3.1) and (11.3.2) with
the load vectors determined at time equal to t s except that Ho, are
replaced by gk(n- %) and E:n « Next, Equations (11.3.3) and (11.3.4)
are solved, evaluating EQl and EQZ at time tn+-%- with the exception
that gk(n+%J is replaced by gkn and gzn . The split time scheme 1is
therefore equivalent to a centered time differencing of local acceleration,
principal gravitational and all external load térms, whereas a simple for-
ward differencing is used for non-linear, coriclis and internal stress
terms. The accuracy is hence essentially cof order Atz, but could
deteriorate to 0 (At) 1f the forward differenced terms become dominant.
A theoretical stability analysis is made difficult by the coupling between
layers and is therefore not attempted. Experience with this acheme has
shown it tc be reasonably stable and accurate. Thus time increments in
the neighborhoed of Atcr for the external wave can be used. Note

that, as a first approximation for long waves, the external wave velocity

is given by:

2 =
(11.3.5) c2 g (H1 + Hz)
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and the internal wave velocity is similarly:

(11.3.6) N s(pl—pz)ﬂln2

91;H1+ HZ)

The external wave propagates with the same velocity as if the medium was

homogeneous and the internal wave moves slower by an approximate factor

of lp 2 « For numerical stability, Ce i the decisive factor
1

whereas ci

determines the time interval where the specified initial

condition still plays a role. Due to ¢, it is generally necessary to

: |

integrate over much longer periods in order that the results become inde-

pendent of initial conditions than in the one layer case.

Figure 11-1 shows a flow chart for the two~lgyer model,
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INPUT:  GRID INFORMAT/ON
SYSTEM PROPERTIES
INTEGRATION PARAMETERS

!

OMPUTE: SYSTEM MATRICES
ACCOUNT FOR PRESCRIBED VAL,
DECOMPOSE

Y
INITIATE PROBLEM

> i

t+at2: COMPUTE H1, H2

USING : H1, H2 AT -4t/
QA1 Q2 AT t
| Y

+at : COMPUTE Q1,02
USING: H1,HZ AT t+a4fy
Q1;Q2 AT ¢
Y
< g OUTPUTS

Figure 11-1 : Flow Chart for Two-Layer Model
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CHAPTER 12

VERIFICATIONS AND APPLICATIONS

The relatively short time the two layer model has been opera-
tional limits our experience with it as a predictive tool. Some compari-
sons with known analytical sclutions and also a verification against ex-
perimental data are presented here. An application of the model to a
rectangular ldealization of Massachusetts Bay is included to illustrate

its potential.

12.1 Analytical Study ~ One Dimensional Channel

The first example consists of the system shown in Figure 12-1,
a rectangular channel of length L having two layers of water with depths
hys hy and densities P1s Pp- The channel is closed with a vertical

wall at x=0 and the surface and interface are forced according to

(12.1.,1) + b cos yt x = =L

m "0

(12.1.2) n, = 4+ a cos yt x = =L,

N20

vhere 1n,, and n,, are the mean positions.
Neglecting friction, coriolis and external forces,the governing

differential equations, are (Layer 1):

p
Ao 2 -

(12.1.4) H
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where (ap = N pz)

layer 2 :

(12.1.5) 9 . + gHZ T, 0
(12.1.8) HZ,t + q2,x = 0

This set of equations is further simplified by linearizing and assuming

the bottom to be horizontal. Let

(12-1- ?) Hl = nl - ‘no H nlo -_ no = hl

(12.1.8) H2 = n2 - ‘nl £ n20 - nlo = h?

One obtaine after some calculatlions

(12.1.9) - gh, 4 22 , 2 = 0
e nl,l:t B 1 c n1,xx €1 r‘2,:::;

(12.1.10) - ¢h

M2,er ~ M,et 2 "2, xx

The boundary conditions are given by (12.1.1), (12.1.2) and

(12.1.11) nl,x

(12.1.12) n, = O x =0

The two latter conditions are derived from (12.3) and (12.5) by re-

quiring the discharges to vanish at x =0 for t > 0., We look for a

harmonic solution and assume
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(12.1.13) n, = Real (T, K190
Lquations (12.1.10) and (12.1.9) then given
gh,
14 = £
(12.1.14) ':1 Cz + - gz’xx
78]
(h,+h,} s
1 27 (=%
(12.1.15) L, + g - Sk o

The problem is now reduced to finding ¢,

series solution

gh, gh,

wll

2 ,XXXX

and we assume a cosine

® 1wt
(12.1.16) N, = Real {3 Acosk xe '}
n N n
which satisfies (12.1.12). Inserting in (12.1.15) gives
0 (h +h ) 8 4
1 2 2 1 w
(12.1.17) kY- = ———-—-u) k 24+ = 0
n  Ap gh1 9 u Lo ghl gh2
(12.1.18) e =1L h1hy) w? 2 w? /{ ¥-2¥ hythy) e R
n 2 Ap ghl h, 2 1 h2 ) ghl th
It is easily verified that the argument of the square root is always
positive and therefore there are only two wave numbers.
+
(12.1.19) NE i B i LR // 11 0y hz) e R
2 2 Ap gk, h, 2 ip gh h, Ap gh,eh,
El (h1+h2) |
Ap ghlhz

228



~ .—\ by ; ;
{(12.1.20) k2 = L 2.91_.1:-_&‘_1.)_ AL /( .J-_:,};_(_}l._ig) 2_5.];._._.1.__...
2 2 Lo gh1 li., 2 Ap g;h..l h2 Ap ghlgh2
N w*
g(hl+ hz)
Noting the relation
2
(12.1.21) c? = B
kz

the wave velocities given in Equations (11.3.5) and (11.3.6) are
easily derived.

The final solution is

(12.1.22) n, = {A cos kl x + B cos k, x } cos wt
Bhy gh,
(12.1.23) n., = {A (- —5 k) cos k,x + B(l - —= k_%*)cos k.x}
1 1l 1 2 2 2
w w
cos w t
where gh \
a(l - e k2 )y - b
{12.1.24) A = h
(ki -kzz) 22 cos k, L
2 1
w
gh, ,
a(ar'kl-l)"b
{12.1.25) B = i

2 2 gh,
(kl - k2 ) KF"-cos k2 L
In the first test the density difference was assumed zero

and the channel was forced as a homogeneous medium. Table 12-1 lists
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the parameters used. For an interval of more than 3 T, the computed
solution agreed with the analytical result presented in Chapter 8,
' The velocities in both layers were equal at all times and the inter-
face displacement was exactly half of the surface displacement. The
split time method was used and the surface and Interface pesition was

prescribed as initial condition at t = 0 with all velocities zero.

a = (0.2 m

b = 0.lm
hl = 10m
h2 = 10m
L = 500m

T = 2500 sec.

Pp = P = 1000 kg/m?
Ax = S50m

Ay = 50m

At = 2.5 sec.

Table 12-]1. STANDING WAVE IN HOMOGENEOUS
TWO LAYER CHANNEL

For the second test, the densities were assigned different
values. The interface was assumed fixed at x = ~L and the period of
the foreing was adjusted so that approximately 2 full interfacial waves
were contained in the length of the channel. Table 12~2 contains the-
values of the parameters and Figure 12-2 shows the exact position of

both surface and interface with the error of the computed interface po-
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sition (error = (nl) - (nl) ) plotted underneath. The computed
exact FE
solution was started

a = (0.2 m

b = 0mnm
h1 = 10m
h2 = 0m
L = 500 m

T = 500 sec.
py = 1005 kg/m?
= 1000 kg/m?
Ax = 50m

Ay = S0m

At = 2.5 gec.

Table 12-2: STANDING WAVE IN TWO LAYER
CHANNEL COURSE GRID

at time 0 with the correct initial condition and the results shown

are for time t = T. Since the results are rather inaccurate, the

FE discretization was improved by halving the grid spacing in the

x direction. Computed errors for this grid at t = T and t = 2T

are also shown in Figure 12-2; the time step used was At = 1.25 sec.
Finally, to settle whether the errors are caused by grid dispersion
(spatial truncation error), the forcing period was doubled leaving

only one intermal wave in the channel. The parameters for the numerical
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n, tm
4

————— -+ 0.20

b+ 0.10

L« 0.0

——x—me Surfacs

wiSey®ey Intarface

Mw

error [ m)
4
1: 0.02
L ]
* . - 0.01
£ o - ‘ I S — 2
. . : - 5 F L N . »
] * L~ 0,01
- L J
L - 0.02

Error (uS)

10 Intarvel grid 1 T
20 Intarval grid. 1 T
20 Intarval grid 2 T

Figure 12-2. Standing wave in two layer channel. Comparison
between analytical and FE solutions. T = 500 sec.
Error 1s difference between exact and computed
solutions for the indicated grids and times.
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computation are listed in Table 12~3 and the comparison between

exact and FE solution is again shown in terms of the error in Figure
12-3. Close agreement is found and we conclude that to accurately
describe a full wave, approximately 20 pointa/wavelength are necessary
for linear triangles, For higher order elements, such as quadratic
triangles, fewer points are needed which is the main advantage of such

elements,

a = 0.2 m

b = 0m
h1 = 10nm
h2 = 10m
L = S00nm

T = 1000 sec
= 1005 kg/m?
p, = 1000 kg/m®
Ax = 25 m

Ay = 50m

At = 1,25 sgec.

Table 12-3: PARAMETER VALUES FOR TWO LAYER
CHANNEL. FINE GRID.

The fact that forced interfacial waves are shorter than
surface waves often necessitates the use of a finer grid for strati-
fied flow than for homogeneous flow and failure to recognize this

can produce spurious results.
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Figure 12-3. Standing wave in two layer channel. Comparison
between analytical and FE solution for 20 inter-
val grid at t=2T, where T = 1000 sec.
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i2,2 Cowparison with Experimental Study

The problem of wave propagation in a two layered channel was
approached experimentally znd theoretically by Hyden [30, 31]. His
analvtical model assumed one-dimensional flow and employed the method
or characteristics for numerical solution. We take his experimental
results for run 1 as a basis for comparisor with our FE model.
Figures 12-4 and 12-5 show the experimental set-up,and dimensions and

initial conditions are listed in Table 12-4 . Equation (12.2.1) is

Length 16,72 m
width 0.60 m

bottom layer depth 0.493 m

top layer depth 0.506 m
bottom layer density 1007.36 kg/m?
top layer density 998.75 kg/m?

period of piston rotation, T 235 sec

log time at start t 0.641 rad.

lag

Table 12-4: 1INITIAL DATA FOR HYDEN'S RUN NO. 1

an expression for the discharge from the top into the bottom layer.

(12.2.1) q = ~23?%ﬂll . %ﬂ cos(%1 ot + tlag) [m?/msec]

The top laver thickness was measured at both ends of the channel and

the maximum velocity in the bottom layer was also observed.
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A FE grid similar to the one shown in Figure 12-1 was
employed. Grid dimensions and other parameters are listed in Table
12-5. The problem was solved using the split time integration scheme
with a At of 0.4 sec. Although this At is somewhat larger than
ﬁtcr, no instabilities were experienced, indicating the same advantage
over explicit schemes as found for the one layer case. Figure 12-6
shows the measured and computed top layer thicknesses vs, time at the

closed end of the channel.

Ax = 16.72/12 = 1.3935 m

Ay = 50n

c, = Jgiﬂl;ﬂzi = 3.13 m/sec

Atcr- Ax =  [0.3148 sec
Ce

At = 0.4 sec

Table 12.5 PARAMETERS FOR FE SOLUTION

Both bottom and interfacial friction were neglected in the computations
and the computed resulte therefore peak slightly before the actual
measured peak. The amplitudes are also somewhat greater than the
measured values, It is reasonable to expect that by including some
friction, the measurements could be fitted closer as shown by Hyden
(30]. The measured maximum velocity in the bottom layer was Uy ax T

0.021 m/sec, whereas the FE model gave 0.015 m/sec after 1420 sec.

If the computations were carried through to a harmonic steady state,
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which was not reached after 1500 sec, much better agresment would be

found.

12.3 Rectapgular Model - Massachusetts Bay

The two layer model was applied to the rectangular approxima~
tion of Massachusetts Bay which was also considered in Chapter 8. The
rectangular simplification allows us to compare the results qualita—
tively with an analytical solution by Briggs and Madsen [12]. Since
the FE model requires both layers to exist over the entire domain, 1t
would not be reasonable to model the Bay geometry correctly,but at the
same time make gross assumptions about the bathymetry. Also, we avoid
problems concerning the specification of boundary and initial con-
ditions by restricting the analysis to the simplified case.

Figure 12-7 shows the FE grid, which has a considerably smaller
mesh size than the one used for the one layer case in antlcipation of
shorter interfacial waves. The split time scheme was applied for
the integration and the parameters are shown in Table 12-6. Since prac-
tically no information is available about the movement of the lower
layer, it was decided to fix the interface elevation at its initial
position along the ocean boundary. The surface was then forced as

before according to

(12.3°1) Ny = Ny + Ny (1l-coswt)

Wind, coriolis and friction are neglected and the computations were

carried out until a harmonic steady state was reached after approxi-
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mately 200000 sec.

NMNP = 94
NMEL = 149

total initial depth = 36.6 m

T]lo = 2404 m
Myg ™ 12.2 m
Py ™ 1005.0 kg/m?®

p, = 1000.0 kg/m®

= 1.30m

= 0.0m

T = 45000 sec

w = 2 0.,001396 sec”’

T
200 sec

24

Atcr

At = 250 sec.

Table 12-6: PARAMETERS FOR TWO LAYER
APPROXTMATION OF MASS, BAY

Figures 12-8 to 12-10 show the interface displacements at
different times. The symmetry in interface position between Figures
12-9 and 12-10 indicates that the standing wave has been obtained.
Figure 12-11 shows the surface displacement which is quite smooth in
X, ¥y @as expected. Snapshot pictures of the currents in the two
layers are shown in the figures 12-12 to 12-20. The effect of strati-
fication is quite evident in the current fields which often display a

counterflow behavior and demonstrate the importance of two or multi-
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layer models. Although the boundary conditions in our example are
different from thosc used by Briggs and Madsen in their analytical so-
lution, there are several resemblances both in current fields and the
wave lengths of the internal waves.

The descriptive capability of the two layer model for stratified
flow is obviously much Improved over one layer models. Our experience
with the model is still limited and more applications are necessary to
determine the model's sensitivity to the various parameters. In appli-
cations, the specification of boundary and initial conditions and
field verification are certainly the major problems.

The computational effort expended for a two layer solution is

approximately twice that of the one laver model,
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CHAPTER 13
CONCLUSTON

Much experience has been gained throuph applirations of the one
layer mwodel. 1t is a powerful and efficient cromputoer based tool for
predicting circutation when applied to situations for which it is in-
tended.,  These are predominantly long wave propagation and streamf low
simulations in vertically homogeneous shallow (°200m) water bodies.

Long period wind driven circulation is also handled wel) by the model.
However, due to the relatively slow growth of a boundary layer from
the surface, only total mass transport is predicted for short period
wind events. As a fivst approximation the model can also be used to
predict the far field circulation of an intake outfall system, such as
employed for cooling by large electric generating plants.

A well defined simulation problem necessarily requires specified
boundary conditions. In terms of the natural dependent variables, total
depth and specific discharges per unit width, the correct boundary con-
ditions consist of either prescribed normal and fangential force measures
or normal and tamgential discharges. Existing field monitoring programs
presently do not satisfy these minimal requirements, partly because of
inadequate technology. However, to improve modeling accuracy, it is
important that consistent measurements in the field are obtained,

The finite element spatial discretization is found to be superior
to other approaches for general purpose model systems. The flexibility
of the grid layout is an enormous advantage. More accurate medels
(i.e. with higher order truncation errors)} are easily constructed.

Several applications have shown that reasonable solutions are found
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even with quite coarse grids.

For temporal discretization we employ finite difference schemes.
Since there are no topographical problems in the time domain it is
eaSier to construct an efficient finite difference scheme. Stability
analysis of FE generated systems of differential equations is still in
an embryonic stage. The difficulty in establishing stability criteria,
and not having the possibility of "playing" with combinations of gspace
and time discretizations, are presently the main objections to the FEM.
For the one layer model we proved stability in a linear initial value
problem sense. However, we have been able to exceed the critical time
step for explicit FDM, only by approximately 50%. More research is
needed in this area.

Analysis and many verification studies have established the accur-
acy of computed solutions to the formulated probiem.

To improve predictions in transient wind and stratified situations
a two layer idealized model has been developed. Although multi layer
models can be and have bcen constructed to better describe the flow
patterns, it is felt that in most cases the uncertainty and inaccuracy
of measurements in the field camnot justify the use of more than two
layers.

An attempt to determine the interfacial mass and momentum transfers
from published studies is not conclusive. The strategy in using the two
layer model is therefore to try to bracket a solution by performing
sensitivity studies on the various parameters. Open ocean boundary
conditions present a major problem inherent in atl types of models.

This necessitates extensive field monitoring programs, a point which
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perhaps cannot be bver emphasized.

Future model development work could try to approach the problems
of having a moving land boundary for the lower layer and in flooding
situations also of the top layer. With implementation of a ﬁass balance
equation to predict the changes in density, one also has to address the
problem of instability in the density structure. Lastly, the ultimate
objective of circulation studies should not be forgotten, namely pre-

diction of trausport and spreading of dissolved or suspended matter.
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AFFPENDIX A

DERIVATION OF FINITE ELEMENT ANALUGUE FOR THE

EQUATIONS OF MOTION

Following the same approach as in Chapter 5, the equation for
an arbitrary element is first developed. Thereafter, the system equa-
tions are easily obtained by summing the contributions from all the ele-
ments. Where nothing else is mentioned, a variable 1is assumed expan-

ded according to (5.13).

Starting with Equation (4.29), we find term by term

_ T T N ‘T,
(A'l) J qx,t Aqx da = &SX J Q @ dA 9x t &5. E 9x t
A . A L] ¥
1 i
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ij .
H
the convective terms are written
(A.3) J T T
Ai (uqx),x flqx dA = Aqx Ja f ?.x dA Cxx
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Assuming

{(A.7)
leads to
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The last Integral over Sq always vanishes, If we, for the
moment peglect all external loads and ignore the non-linear terms, we

are left with

e
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The boundary integrals have also been ignored eince we are
considering the interior. For slowly varying depth, fi.e. gn * h g &
]
Eh %& » the third term in the integrand may also be dropped. The

expression (A.20) is then written
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where we have used (5.21) and
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Exactly the same way we obtain for the y-direction
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Returning now to the original form of the equations, all the

ignored terms are lumped into a load vector. Thus
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e e, T
i 1 T 1, 4T €y . T .8
. -E " = (& J + + T
(A 29) ~5 (ﬂy) A{? f,x EXY ?i?.,y Eyy ..’?i..y
1
e
LT o qd _ oT o et 1¢T¢Psi¢ e
-C - - -
f? ?i..y ?..,.y Py ~ ~~ sy~
e e -] e e
B gToatont hi-goTonte nt
po... ~ ~ o~ 2y ~ LA A ~yY ~
e e [ [ ] e
1 T 1 1_1 g T i 1
- - H B
28¢y2n ¢0 -3 o, $y%00 oM oH
e
i e
1 T 8 i
- — P H
p ?Iy L 2:& }dA



e, T e a e
i T _i i T i, %
- {a _ .
(ﬁﬂy) I ny¢ ¥y f,y ..Q.y ny? (8?!} ?E
9
1 ei e e e e e e
-58onent-FEemptoutent- Lo tent
o ~ o p -~ - - A P poab-v -~ -
0
vra B oT o ®1+¢ ol tds
nx Xy -~ "ixgy -:}'93(

e; T
i e e e
+ (A 4 Lt * 1
(b&x) Is anyg'r{sfhiﬁ’;[} +%8¢n ¢n
F L ) e

Finally, assembling the system equations by summing over all

elements,become:
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